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DISCHARGE COEFFICIENTS OF SQUARE-EDGED ORI-

FICES FOR MEASURING THE FLOW OF AIR

By H. S. Bean, E. Buckingham, and P. S. Murphy

ABSTRACT

1. Air at pressures between 1 and 13 atmospheres was passed through square-

edged concentric orifices installed in long, straight pipes of 4, 6, and 8 inches

nominal diameter, the three pipes being in series. At each orifice the temperature

and static pressure were observed, and the fall of pressure through the orifice was
measured between pairs of taps located in each of the three ways commonly
adopted in commercial orifice meter practice.

2. The rate of flow was measured by throttling the air nearly to atmospheric

pressure and discharging it through a flow nozzle on the end of the line. The
design, calibration, and peculiarities of behavior of the nozzles are described, and
the theory of this method of measurement is discussed in two appendixes. Such
nozzles appear to be very satisfactory for use as primary standards.

3. The various quantities known as discharge coefficients and used in orifice

meter computations are defined.

4. The experimental results are represented by equations connecting the values

of the discharge coefficients with the ratio of orifice to pipe diameter and with the

ratio of downstream to upstream static pressure. Tables of numerical values of

discharge coefficients are also given.

5. The accuracy of the results and the limitations to their general applicability

are discussed.
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I. INTRODUCTION

During the summers of 1922, 1923, and 1924 experiments on the

flow of air through orifices of the type commonly used for metering

gases were carried out at Edgewood, Md., as a cooperative project

between the Chemical Warfare Service of the United States Army
and the Bureau of Standards. The authorities of Edgewood Arsenal

contributed the use of a bank of large ammonia compressors with

their appurtenances, and of much other engineering material, tools,

etc.; and, in addition to furnishing the power needed, they facilitated

the work in every way possible. The installation of the piping,

apparatus, and instruments and the taking of observations were

carried out by members of the staff of the Bureau of Standards.

This paper contains a brief description of the apparatus and

methods employed and presents a summary of the more important

results of the investigation, together with such comments and dis-

cussion as seem appropriate. Several matters which required more
extended discussion than appeared desirable in the body of the paper

have been treated in appendixes.

II. GENERAL PLAN OF THE INVESTIGATION

In regard to any one orifice, the object of the experiments is to

determine the relation between the rate of discharge of air through

the orifice, on the one hand, and the temperature and static pressure

of the air and the pressure drop or differential across the orifice,

on the other. If this relation has been determined and expressed

in simple form, the rate of discharge may thereafter be found, by

computation or graphically, from observations of the temperature,
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static pressure, and differential, and the orifice may thus be utilized

as a flow meter for air.

The purpose of the investigation was to obtain experimental data

from orifices of various sizes and proportions, working over a wide

range of static pressures and rates of flow, so as to get as much
systematic general information regarding the properties and be-

havior of such orifices as was practicable with the facilities and in

the time at our disposal.

The circumstances which permitted of using large volumes of air

and high static pressures, so as to cover a wide range of working

conditions, entailed the disadvantage—which attaches to most large

scale as contrasted with laboratory experiments—of making it impos-

sible to secure high precision in the individual experiments. To
offset this, the methods adopted made it practicable to work rapidly

and make a large number of separate experiments so as, in some
degree, to average out the accidental errors.

The principle of the experiments is very simple. A steady stream

of compressed air is sent along the pipe in which the orifice to be

tested is installed; the temperature, static pressure, and differential

are observed by means of instruments near the orifice; and at the

same time the rate at which air is flowing along the pipe and through

the orifice is measured by some independent means, either ahead of

the orifice or farther along the line.

The most obvious method of measurement is to discharge the air

into a gas holder and measure the rate of rise, but since no holder of

sufficient size was available the rate of discharge was determined by
means of flow nozzles, as will be explained later. If the flow of air is

not perfectly steady, the capacity between the orifice and the flow

nozzle on the end of the line introduces a time lag, so that, though the

measurement of the rate of discharge from the nozzle may be accurate,

it does not correspond exactly in time to the observations made
simultaneously at the orifice. Accidental errors of this sort were

unavoidable because the power supply to the compressors was not

perfectly steady, and the speed of the compressors could not be held

entirely constant.

III. ORIFICE PLATES

The orifices to be reported on here were all of the most familiar

type—round, concentric with the pipe, and square-edged afr the

upstream face of the plate. They were adapted for use in pipes, of

8, 6, and 4 inches nominal diameter, and the list in Table 1 gives

some of their important dimensions. - ^ ^ 2fl

mo
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Table 1.

—

List of orifice plates

D=inside diameter of pipe in inches.
d= diameter of orifice in inches.

e. w.=width of cylindrical edge of orifice in inches.
d/D=P= diameter ratio.

e. w./d= edge-width ratio.

[Letters in column 5 denote the owners'of the borrowed plates, as follows B, Bachrach Instrument Co-
C, Chemical Warfare Service; F, Foxboro Co.; H, Hope Natural Gas Co.; M, Metric Metal Works]

'

Diameter of pipe D (inches.)

Serial

number-
of plate

Diameter
ratio

1r*

Edge-
width
ratio

e. w.

Owner
of plate

d

1 2 3 4 5

r i-8 0. 1308 0.128
2-8 .1961 .085
3-8 .2050 .090 M.
4-8 .2613 .064
5-8 .2778 .061
6-8 .3931 .043
7-8 .3936 .010 H.
8-8 .3960 .042

7.634 9-8
10-8

.4015

.4996
.046
.031

M.
M.

11-8 .5245 .008 H.
12-8 .5254 .032
13-8 .5580 .030
14-8 .5980 .028 M.
15-8 .7042 .024 M.
16-8 .7847 .021
17-8 .8023 .021 M.

( 1-6 .1080 .212 F.
2-6 .192 .123 F.
3-6 .2636 .084

i\& sdu
4-6 .3026 .067 F.
5-0 .3453 .065

\o TshlOii v..

6-6
7-6

.411

.497
.048
.047

F.
F.

5J78,

5jt ._. t ~ i

8-6
9-6

.5180

.5190
.043
.042^;d TOraraiOTsrc.

si ii& lo wofi: 9At li
10-6
11-6

.562

.605
.039
.037

F.
F.

wofi odJ ba& sonho
12-6
13-6

.630

.6094
.009
.033

B.

adt dgiroitt J.Bd$ ov <§&!
14-6
15-6

.780

.801
.032
.007

F.
B.

^BUJOOfi 3d Y.BHI 9lsS0i
f 1-4 .1992 .186 M.

9bvBm gaobfivisacfo 9iii
2-4
3-4

.2642

.2651
.084
.067

C.

919w iios sidi to sioti9
4-4
5-4

.2651

.2656
.124
.036

«)Ofl S.8W 810389iqfIXOO 9.di Ot
(

6-4
7-4

.3295

.3977
.105
.093 M.

f^fgff— o.ft_t>Ijy^-810@893&q.£CtOa-9lj
8-4
9-4

.3982

.5295
.021
.129

H.

10-4 .5305 .036 C.
11-4 .5944 .058

BSTAJq £01, 12-4
13-4

.6125

.6624
.056
.012

M.
H.

14-4 .6651 .049

xfiilb n 9ffo to His 9i9W 9iexi no 15-4
16-4

.8277

.8578
.038
.040

M.

Li_u—:

Of these 48 plates, 22 were made at the Bureau of Standards,

While the"others^ Were loaned to us by the five organizations named
in the heading of the table, to all of whom we wish to express our

thanks.

The bureau plates were made with great care, and the inclusion of

the commercial plates increased the interest of the results by show-
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ing that, as a general rule, the behavior of the commercial plates did

not differ appreciably from that of similar plates made at the

bureau.

The plates were all in good condition, with the corner between

the flat upstream face of the plate and the cylindrical edge of the

orifice approximately square and smooth. Microscopic examination

showed in many cases that this entrance corner was by no means
perfect, but with few exceptions the experiments failed to reveal

differences of behavior that could be traced to these visible imper-

fections of finish.

The 12 plates loaned by the Metric Metal Works were 34 inch

thick and were chamfered on the downstream side so as to leave the

cylindrical edge of the orifice only }/$ inch wide. Of the 4 plates

loaned by the Hope Natural Gas Co., the two larger were % inch

P/ping and test fines used In

all tests

Additional piping for high

pressure tests.

Compressor Cy/mder-s. J8~*30"

Scale: Wry •?'

Fig. 1.

—

Arrangement of piping for orifice meter tests

Located in part of 155 mm gas shell filling plant of Edgewood
Arsenal, Md.

thick and the two smaller J4 inch. All 4 were chamfered so as to

leave the cylindrical edge of the orifice about ^ inch wide. All

the other plates were fiat on both sides with the hole bored straight

through, the thicknesses of the plates being ^ inch or less.

IV. COMPRESSORS AND TEST LINE

The general arrangement and approximate dimensions of the ex-

perimental installation are shown in Figure 1

.

Air was supplied by one or more of a set of four 18 by 30 inch

ammonia compressors which had a maximum combined output of

about 30 cubic feet of free air per second. In most cases the gauge
pressure in the test line was limited to 75 lbs./in.

2 at the first orifice,

but a number of runs were also made at pressures up to 275 lbs./in.
2
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For these high-pressure runs the compressors were compounded, so

that three working in parallel discharged through an intercooler to

the fourth, acting as a second stage.

From the compressors to the first, or 4-inch orifice station, the air

passed successively through: (a) Two oil traps of 60 cubic feet capac-

ity, (h) a bank of ammonia condenser coils, (c) 100 feet of 4-inch pipe,

(d) a receiver of 450 cubic feet capacity, and (e) 130 feet more of

4-inch pipe. This pipe, as well as the following 6 and 8 inch sections

of the line, was " extra heavy." The lengths and volumes stated

above are, of course, only approximate.

Any desired number of the 48 sections of the condenser coils could

be cut out so as to change the resistance, and by this means, together

with adjustment of a valve at the outlet from the receiver, a pressure

drop of from 10 to 15 lbs. /in.
2 was maintained between the compressor

outlet and the first orifice station. This resistance, in conjunction

with the capacities mentioned, was sufficient to prevent any appreci-

able compressor pulsations from reaching the orifices. In the begin-

ning, two further receivers with a total volume of 2,300 cubic feet

were connected to the smaller receiver as additional steadying capacity,

but they were found to be unnecessary and were shut off to save time

in starting up.

The 4-inch orifice station was followed by somewhat over 400 feet

of 4, 6, and 8 inch pipe, with the 6 and 8 inch stations and three gate

valves, located as shown in Figure 1 . The terminal section of the line

consisted of a 30-foot length of 36-inch pipe, and on the end of this

was a flow nozzle through which the air finally escaped. The parts

of the line which were not under cover were shielded from direct

sunshine by semicylindrical sections of cork insulation laid on top of

the pipe.

V. ORIFICE STATIONS

Except for the difference of pipe diameter all three orifice stations

were much alike. Figure 2 is a view of the 8-inch station. The 4

and 8 inch flanges for holding the orifice plates were kindly loaned to

us by the Hope Natural Gas Co., and the 6-inch pair was made at

the Bureau of Standards.

The side holes for pressure connections, provided at various dis-

tances from the orifice plate, were tapped with 3^8-inch standard

threads, and after the internal burr had been removed, brass connectors

were screwed in, care being taken that they did not project beyond

the inner surface of the pipe. All the upstream holes were connected

to a single header through ^-inch copper tubing, each lead including

a valve so that any one hole could be used by itself. The downstream

holes were similarly connected to a second header, the two headers

were connected to the differential gauge, and either header could

be connected to the static pressure gauge.
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Fig. 3.

—

Discharge nozzle and impact tips
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The distance from the center of each side hole to the face of the

nearer flange was measured, once for all. A punch mark was made
on the flange, and its distance from the face was also measured, the

marks on the two flanges being on a line parallel to the axis of the

pipe. After a plate of known thickness had been inserted and the

bolts drawn up, a measurement of the distance between the two punch
marks gave the combined thickness of the two gaskets; and on the

permissible assumption that the gaskets were of sensibly equal thick-

ness, the distance of any hole from the upstream face of the orifice

plate could be computed.

Static pressures above 100 inches of mercury were read on stand-

ardized Bourbon gauges and lower pressures on mercury U-tube

manometers. Differentials were read on U-tube manometers con-

taining water, carbon tetrachloride, or mercury.

Wells containing mercurial thermometers were located about 12

pipe diameters upstream and downstream from the orifice plate.

They had fins to increase the surface in contact with the air flowing

along the pipe.

Thermometers were hung in suitable places for giving the approxi-

mate temperatures of the manometer columns, so that temperature

corrections could be applied when needed.

VI. APPARATUS FOR MEASURING TEE RATE OF DISCHARGE

The rate of flow of air along the line was measured by means of a

nozzle and impact tube, according to the method described by S. A.

Moss. 1 Figure 1 shows the position of the 36-inch pipe or discharge

trunk in relation to the test line, and Figure 3 shows the end of the

trunk with a nozzle and impact tubes in place.

Inside the trunk a mercurial thermometer gave the temperature

of the air approaching the nozzle, and a recording psychrometer near

the entrance end furnished data for finding the humidity. Two
honeycombs were used to straighten and regularize the flow along the

trunk toward the nozzle.

The large impact tip shown in Figure 3 was 34 mcn m diameter

and was fixed on the axis of the jet about 2J^ inches out from the

end of the nozzle. It was connected to one leg of an open, vertical

manometer containing water or oil which served to measure the im-

pact pressure at the center of the jet, and it could also be connected

to one leg of an inclined manometer which was employed during

calibration.

The small impact tip, about 0.02 inch in diameter, was mounted
on a radial cross slide and could be traversed along any radius of the

jet, just clearing the end of the nozzle. A scale and vernier permitted

of determining its distance from the axis of the nozzle. This small

« Trans. Am. Soc. Mech. Engs., 38, p. 761; 1916.
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tip was used only for calibrating the nozzle, and during this operation

it was connected to the other leg of the inclined manometer men-
tioned above. By traversing the small impact tip along various

radii of the jet and taking readings of the inclined manometer, while

the impact pressure at the large fixed tip remained constant, the

distribution of impact pressure over the area of the mouth of the noz-

zle could be determined.

A mercurial barometer was provided for reducing observed gauge

pressures to absolute pressures when necessary.

Nine nozzles were prepared for the investigation and were cali-

brated, but most of the observations on rates of discharge were made
with only four of them. They were of cast

bronze smoothly finished and polished in-

side. The entrance curve leading to the

cylindrical throat was a quarter-ellipse with

a diameter ratio of 2 to 3, except in one case,

where it was a quarter-circle. Table 2 con-

tains a list of the nozzles, with their throat

diameters and the approximate ratios of

their other dimensions to the throat diam-

eters, the notation being given in Figure 4.

Table 2.

—

Dimensions of flow nozzles

£-.-&-
i

b

MMA

<- C-*i

Nozzle d
c

d

a

d

b

d

D-l
Inches

1.764
3.255
4.206
5.006
3.262

4.521
5.003
3.272
3.258

1

1

1

1

1 %

2A
A-l %
B-l -- %
C-l %
A-2 %
B-2 H
C-2 %
A-3 l

A-4 lFig. 4.

—

Proportions of

flow nozzles

VII. MEASUREMENT OF THE RATE OF DISCHARGE

Air from the test fine entered the discharge trunk and after passing

through the two honeycombs it approached the nozzle in a slow,

regular stream at a speed of not over 4.2 ft. /sec. It then expanded

to the outside barometric pressure and issued from[the parallel-sided

mouth of the nozzle as a cylindrical jet at a speed between fifty and

four hundred times the speed of approach.

In such a jet the impact pressure is uniform all over the middle

part. Near the wall of the nozzle skin friction retards the motion

and the impact pressure falls off; but this influence of the wall does
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not reach far into the jet because with a short nozzle and high air

speed there is no time for it to do so, and the uniform central core of

the jet is not affected by it.

From the uniformity of the impact pressure we may conclude that

the fall of pressure and the increase of speed have taken place in the

same way for all filaments of the core, and that since these filaments

have not been affected by proximity to the wall of the nozzle the flow

in them has been unresisted and adiabatic; that is, isentropic. The
ideal conditions presupposed in the familiar thermodynamic theory

of the formation of jets of gas are therefore satisfied, in the core, to a

high degree of approximation, and the theoretical equations may be

relied upon for computing the rate of discharge per square inch of cross

section of the core as is discussed in Appendix A.

The observational data needed for this are the outside barometric

pressure, the pressure drop or differential through the nozzle, and the

temperature and humidity of the air approaching along the trunk.

The pressure drop through the nozzle is obtained from the central

impact tip. If this tip is connected to one leg of the vertical water

manometer while the other leg is connected to a static side hole in the

wall of the trunk, the manometer shows no difference of pressure.

Strictly speaking, it gives the impact pressure of the air moving along

the trunk, but this was never more than about 0.004 inch of water

and was inappreciable. This relation holds quite accurately—cer-

tainly to better than 1 part in 1,000—up to the speed of sound or the

critical pressure ratio, though not beyond.

It follows from the foregoing that the pressure in the central impact
tip is equal to the pressure of the air ahead of the nozzle in the trunk,

so that its excess over the outside barometric pressure, as read on the

open manometer, is the same thing as the pressure drop which is

driving the air through the nozzle.

The theoretical equation gives the rate of discharge per square inch

of section of the core, and if there were no skin friction and the uniform

core filled the whole section of the mouth of the nozzle, the total rate

of discharge could be found by multiplying the rate per square inch

in the core by the measured area of the nozzle mouth, expressed in

square inches. The actual rate of discharge is, of course, somewhat
less than this because the core does not fill the whole nozzle but is

surrounded by a nonuniform sheath in which the speed falls off

toward the wall. The actual total rate of discharge is therefore the

product of the theoretical rate by a discharge coefficient which is

slightly less than unity and the value of which is determined by
calibration.

Observations with the small, movable impact tip serve to determine

how the speed falls off toward the wall, and when the distribution of
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speed in the nonuniform sheath is known, the discharge coefficient

can be computed. The process will be further discussed in Appen-
dix B.

VIII. REMARKS ON FLOW NOZZLES

The smoother the internal surface of the nozzle the less will be the

tangential retarding drag of skin friction and the nearer will the

discharge coefficient be to unity. With a given quality of surface, a

large nozzle is relatively smoother than a small one; hence it is to be
expected that if the surfaces are finished with equal care, large nozzles

will, in general, have higher discharge coefficients than smaller ones

of the same shape. This rule may, however, be subject to frequent

exceptions, for smoothness of finish is difficult to reproduce at all

exactly, and rather small variations in the internal finish of a nozzle

may have an appreciable effect on the discharge coefficient.

If the linear speed of the air is increased, each individual particle

of air takes less time to pass through the nozzle, and there is less time

for the retarding effect of the drag at the wall to be propagated

inward toward the center of the jet. The diameter of the uniform

core therefore increases, and the discharge coefficient of the nozzle

increases with the linear speed of the jet; that is, with the rate of

discharge or with the impact pressure in the core.

This variation with speed is quite appreciable, especially at low

speeds, and the discharge coefficients of such flow nozzles as were

used in this investigation can not be treated as constants except

over short ranges of speed. The results of the calibration experi-

ments were represented by curves showing the relation of the dis-

charge coefficient to the central impact pressure, and each time that

a nozzle was used to measure the rate of flow of air along the test

line, the value of the discharge coefficient to be used in the computa-

tions was read from the curve for this nozzle, at the impact pressure

observed in the large central impact tip.

An idea of the magnitude of the above-mentioned variations of the

discharge coefficient with diameter and impact pressure may be

obtained from Table 3. This table contains values of the discharge

coefficient read from the calibration curves of the four nozzles which

were used in most of the orifice tests, at impact pressures of Ji= 1, 2,

5, 12, and 30 inches of water, corresponding to linear speeds of about

66, 94, 150, 230, and 360 ft./sec.

Table 3 .

—

Discharge coefficients of nozzles

Nozzle
Throat
diameter
(inches)

Discharge coefficient at

—

ft= l inch ft=2 inches ft=5 inches ft= 12 inches ft=30 inches

D-l 1.764
3.262
4.521
5.003

0.980
.983
.989
.991

0.983
.985
.992
.992

0.986
.988
.994
.994

0.989
.991
.995
.995

0.991

A-2 . .994

B-2
C-2
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The expectation that for similarly finished nozzles the discharge

coefficient will increase with the diameter is seen to be confirmed for

these nozzles. The values in the table also conform to the rule that

the discharge coefficient of a nozzle increases with the rate of dis-

charge, and this gradual increase of the discharge coefficient, as the

uniform core of the jet fills a larger and larger fraction of the cross

section of the mouth of the nozzle, may be regarded as the normal

course of affairs for a nozzle which is suitably designed for the rates

of discharge which it is intended to measure; but exceptions to this

normal behavior may occur if the approach to the cylindrical throat

is too sharply curved. At the entrance end of the nozzle, where the

cross section is large and the speed low, the degree of curvature is of

little importance; but upon approaching the throat the speed in-

creases and the permissible curvature becomes less.

The curvature of the path of the particles of fluid near the wall

of the nozzle gives rise to a centrifugal force directed inward and

causes a decrease of pressure near the wall. In the case of a liquid,

this may result in a detachment of the jet from the wall, so that the

jet contracts and no longer fills the nozzle; and in the case of air, the

result is to decrease the diameter of the uniform core at the mouth of

the nozzle and so decrease the discharge coefficient.

Since the centrifugal force directed away from the curved wall

toward the axis of the nozzle depends on both the curvature of the

path and the linear speed along it, both of these are of importance.

With a given nozzle, the discharge coefficient may increase with the

rate of discharge up to a certain point; but then, if the rate of discharge

is increased still more, the effect of too great curvature of the wall

may begin to make itself evident by a decrease of the discharge

coefficient.

This is what was observed with nozzles A-3 and A-4. With
A-3 the earlier part of the calibration curve was of normal shape

and very like the curves for the other nozzles, but when the impact

pressure had reached about 8 inches of water the discharge coefficient

began to fall slowly instead of continuing to increase. With nozzle

A-4, in which the curvature near the beginning of the cylindrical

throat was considerably sharper, this effect was much more marked
and began earlier—when the impact pressure or the drop through the

nozzle was only 5 or 6 inches of water.

Calibration curves for all the flow nozzles are given in Appendix
B, Figure 12.

IX. DISCHARGE COEFFICIENTS OF ORIFICES FOR LIQUIDS

The most generally useful method of describing the results of such

experiments as those now in question is to state the numerical values

of the discharge coefficients obtained, and that plan is adopted here.
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But a discharge coefficient may be denned in various ways, and the

value obtained from a given set of observations depends on how the

coefficient is defined; hence, unless this is clearly understood, a table

of discharge coefficients has no precise meaning and is useless. It is,

therefore, advisable to discuss the meaning of the term "discharge

coefficient" somewhat fully.

The differential set up by a fluid flowing through an orifice depends

on the density of the fluid as well as on the rate of flow. The density

of an ordinary liquid is so little affected by changes of pressure that

it may be treated as constant, but the density of a gas depends on

the temperature and static pressure in the pipe arid, furthermore, it

decreases as the gas passes through the orifice from a higher to a

lower pressure. For this reason the behavior of gases is somewhat

less simple than that of liquids, and it seems well to discuss liquids

first.

Let it be supposed that we have means for making a liquid of

known density, such as water, flow steadily along a pipe and through

an orifice installed in it; and that a pair of pressure taps and a differ-

ential gauge are provided for measuring the pressure drop, or dif-

ferential, from the upstream to the downstream side of the orifice

plate. Weighing or measuring tanks are also to be provided, so that

the rate of discharge can be determined simultaneously with observa-

tions of the differential, and the relation between the two determined

by experiments at various rates of flow, with various liquids and

various orifices.

The result of such experiments on round, concentric, square-edged

orifices has been to show that under most ordinary conditions:

(a) The rate of discharge M of a given liquid through a particular

orifice is nearly proportional to the square root of the differential A,

or Moc -y/A, nearly; (o) if a given orifice is tested with liquids of dif-

ferent densities, the rate of discharge needed to set up a given differ-

ential is nearly proportional to the square root of the density p, or

Moc Vp, nearly
;

(c) if a larger or smaller orifice is substituted for the

one first used, and if the pipe diameter B and the distances of the

pressure taps from the orifice plate are also increased or decreased

in the same ratio as the orifice diameter d, the rate of discharge of

any one liquid, at a given differential is nearly proportional to the

area of the orifice, that is, to the square of its diameter d, orMoc d2
,

nearly.

These three conclusions from experiment may be summed up by

the statement that if we write

*-&&<" *-**** (1)
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the value of B is nearly the same for all rates of flow, for all liquids,

and for all round, concentric, square-edged orifices of the same
diameter ratio d/D, so long as the pressure taps are always placed in

the same relative positions with respect to the orifice.

If the experiments are made on orifices of some other diameter

ratio, a relation of the same form is obtained, but the value of B is

somewhat different, depending on the value of d/D ; and if the location

of the pressure taps is altered, the value of B is again nearly constant

but different from the previous value.

If B were strictly constant under all circumstances, the result of

the whole investigation could be stated by giving the one value

found for B, and the rate of discharge in any future case could be

found by substituting this value in (1), together with the known
values of d and p, and the observed differential A. For an orifice

of measured diameter, employed for metering a liquid of known
density, the quantity

Bd2^ = K (2)

would be a known constant, and the computation of the rate of

discharge from the observed differential by means of the formula

M= ZVA (3)

would be a very simple operation.

In reality, the three experimental relations stated above are not

exact and B is not always quite constant, even for a given diameter

ratio and with given relative positions of the pressure taps. It may
vary slightly with the absolute size of the orifice, the linear speed of

flow, and the density and viscosity of the liquid; but under most
conditions of ordinary orifice meter practice these variations are

small, and for any one diameter ratio and a given location of the

pressure taps B may be treated as a constant.

It is evident from the foregoing that the results of an experimental

study of the flow of liquids through any type of orifice, such as the

square-edged orifice in a thin plate, might be made conveniently

available for application to orifice meter calculations by means of

tables or curves giving the values found for B, from which the value

to be used in equation (1) in any particular case might be read off,

either directly or by interpolation. This is, in substance, the method
actually adopted, although the conventional presentation of the

subject gives it a slightly different appearance and seems to attach

more importance to an obviously very imperfect theory than is at

all necessary. The conventional treatment runs about as follows

:

The flow of a liquid through an orifice is a mechanical phe-

nomenon and is, of course, subject to the general laws of mechanics;

but the motion is so complicated that it is impossible to construct a
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complete mathematical theory for describing or accounting for all

the details of what happens. Instead of attempting this, we limit

ourselves to considering an ideal state of motion which bears some
resemblance to the reality, though not a very close one, and which is

simple enough that the rate of flow under the ideal conditions can be

computed exactly from mechanical principles.

The ideal simplified state of motion is specified as one in which the

following conditions are satisfied: (a) At the section where the

upstream pressure tap is situated, the velocity is uniform and parallel

to the axis of the pipe, and the static pressure is also uniform all over

the section and equal to the pressure indicated by a gauge connected

to the tap; (b) at the smallest section of the orifice the velocity of the

liquid is perpendicular to the plane of this section—that is, parallel

to the axis of the pipe—and both the velocity and the static pressure

are uniform all over the section; (c) the pressure in the downstream

pressure tap is equal to the uniform static pressure in the plane of the

orifice; and (d) there are no energy losses by turbulence, viscosity,

or skin friction.

In the actual motion of a liquid through an orifice installed in a

pipe, conditions a and d are usually nearly fulfilled, and in these

respects the ideal state of affairs does not differ very much from what
really happens. Conditions b and c may also be nearly satisfied in

practice, if the orifice has a well-rounded entrance or is in the form

of a flow nozzle, and if the pressure taps are suitably placed. For

such an orifice, the conditions presupposed in the theoretical reason-

ing are approximately satisfied, and the rate of discharge deduced

for the ideal case is fairly close to the true rate found by experiment.

But with a square-edged orifice condition b is far from satisfied.

In the plane of the orifice the flow is convergent, and neither the

velocity nor the static pressure is uniform; the jet is trumpet

shaped, with its narrowest section or vena contracta considerably

smaller than the orifice and some distance downstream, and the

velocity and pressure are nearly uniform at the vena contracta

instead of at the orifice. Condition c loses its meaning when b is not

satisfied. The downstream pressure tap may be so placed as to give

the pressure in the vena contracta; but it need not be, and often is

not, so placed, and the pressure it gives depends to a considerable

extent on where it is.

On the whole, it may be said that the ideal state of motion for

which the theoretical deductions are exactly true, while it may be

nearly realized for well-shaped flow nozzles, is not a good repre-

sentation of the facts for square-edged orifices. It is therefore not

surprising that the "theoretical" rate of discharge turns out to be
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quite different from the true rate in the case of square-edged orifices.

Turning, now, to the consideration of the ideal case, let

—

D [ins.] = the inside diameter of the pipe;

d [ins.] = the diameter of the orifice;

/3=^ = the diameter ratio of the orifice;

p[lb./ft. 3
]
= the density of the liquid;

A [lb. /in.
2
]
= the differential;

$i[ft./sec] = the linear speed at the upstream tap;

#2[ft./sec.] = the linear speed through the orifice;

Mt[lt)-./sec.] = tne theoretical rate of discharge;

Jf[lb./sec.] = the actually observed rate;

C^ M/Mt = ike discharge coefficient of the orifice.

Since the rate of flow is the same past the upstream tap as through

the orifice and the speed is uniform over each of these sections (con-

ditions a and b), we have

M
whence

-i(i)
2

^-KS)
2^ w

Si=jpS% = pS% (5)

Since there are no energy losses (condition d), the increase of

kinetic energy of each cubic foot of the liquid, as its speed increases

from Si at the upstream tap to S2 at the plane of the orifice, is equal

to the work done on it by the pressure drop A. Hence, measuring

work and kinetic energy in standard foot pounds, we have

p(S2
2-S1

2
)

''

2X32.174"
144A (6)

or after eliminating Si by means of (5) and solving for S2t

S2=96 -26iV(i4> (8)

Upon substituting this value of S2 in (4), we have as the expression

for the theoretical rate of discharge through the orifice

' 0.5250 M ,~r
,nS
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where Mt
= lb./sec; cZ = ins.; p = lb./ft.

3
; and A = lb/in2 .

The factor

0.5250

VT^ (10)

is independent of the absolute size of the orifice and is a constant for

all orifices of any one diameter ratio, so long as the units specified

above are retained. A change of units would, in general, require

a change in the figure 0.525.

In some unusual circumstances the effects of the departures of the

actual from the ideal motion of the liquid may offset one another in

such a way that the theoretical rate of discharge computed from (9)

agrees with the rate actually observed; but, in general, the two rates

are different, often considerably different. The ratio of the two, or

is known as the "discharge coefficient" of the orifice for the given
liquid at the differential A; and if (12) is written in the form

M=CM't=G^^^M (13)

it states that when the discharge coefficient C is known the true rate

of discharge may be found by multiplying the theoretical rate by
the discharge coefficient.

Upon comparing (13) with (1), we find that

*=pi* <»>

and B differs from C only by a constant factor, the value of which is

determined by the units and the diameter ratio. Hence, what was
said earlier regarding the approximate constancy of B and the con-

venience of representing experimental results by tables of values of

B is equally applicable to the discharge coefficient G. Tables of

either quantity may be transformed into tables of the other by means
of (14) without further experiment.

The statement of results in terms of Cis the method most commonly
adopted, and it has the advantage that C is a pure ratio and therefore

independent of the units in which rates of discharge are expressed,

so long as the same unit is used for both M and Mt . On the other

hand, the constant in (14) does depend on what units are used for

M, d, p, and A, and the same is therefore true of B. Accordingly,

results stated in terms of B would be directly applicable only to

computations made in terms of a particular set of units, whereas a

statement in terms of C is applicable, whatever the units used. A
further advantage of stating results in terms of the discharge coeffi-
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cient C is that it conforms to established practice and so facilitates

the comparison of new experimental results with data which may
already have been published.

In leading up to the conception of the discharge coefficient, the

first step was to specify an ideal state of motion of the liquid which

was simple enough to be treated rigorously by the principles of

mechanics. This led to equation (9) for the theoretical rate of dis-

charge and to the definition of C by (12). The result is satisfactory

because, for a given liquid flowing through a given orifice, the dis-

charge coefficient thus defined is nearly constant, so that equation

(13) reduces to the very simple approximate form

M=K<y[A (15)

where K is a known constant, to the same order of accuracy as C
itself is a known constant.

But there was no necessity of specifying the ideal motion in the

particular way adopted, for any other ideal state of motion that was
simple enough to be treated rigorously by theoretical principles might

equally well have been selected. A different choice would have led

to a different expression for the theoretical rate of discharge Mt ; and

the discharge coefficient defined by (12), in conjunction with the

equation for Mt , would have had a different value. It is therefore

evident that the discharge coefficient might be defined in various

ways, and that the term "discharge coefficient" has no definite

significance unless accompanied by a statement of how the " theo-

retical' ' rate of discharge is to be computed.

Since the procedure followed above leads to a satisfactorily simple

result, there is no object in making a change unless it either simplifies

the computation of Mt or leads to more nearly constant values of

the discharge coefficient; and in practice, only one other definition of

the discharge coefficient is in common use. It is arrived at by adding

to the conditions already imposed on the ideal state of motion the

further condition that the diameter of the pipe shall be treated as if

very much larger than the diameter of the orifice, regardless of what
the ratio of the two really is, thus departing still further from the

actual state of motion.

Imposing this condition is equivalent to setting /3 = in the equa-

tions already obtained, without changing anything else, and we get

the equations

lf t
= 0.5250cZ2VpA (16)

Gt=m (17)

J/=tf'if\=<7X0.5250cZ2VpA (18)

in place of (9, 12, 13).

14830°—29 2
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The quantity C denned by (16, 17) may be called "the discharge

coefficient with approach factor included," to distinguish it from C,

which is "the discharge coefficient with approach factor not included."

When the term "discharge coefficient" is used without qualification,

it usually means C and not C Comparison of (18) with (13)

shows that

C=C"Vl-/34
(19)

so that either form of the discharge coefficient may readily be trans-

formed into the other and a table of one is equivalent to tables of both.

When the diameter ratio d/D = p is small, C and C are nearly

equal, and it is unnecessary to distinguish them. For example,

if d = 0.2D, (7=0.9992(7'. But if d = 0.5D, C= 0.96820', and mis-

taking one for the other would result in an error of over 3 per cent.

X. DISCHARGE COEFFICIENTS OF ORIFICES FOR GASES

The subject of discharge coefficients may be discussed in the same
general way for gases as for liquids. By specifying an ideal state of

motion that. is simple enough for exact treatment on theoretical

principles we find the rate at which the gas would flow through the

orifice if the ideal conditions could be realised, and we then express

the ratio of the actual to the theoretical rate as a discharge coefficient.

If the orifice meter is to be a commercial and not merely a laboratory

instrument, the computations must be simple, and the discharge

coefficient must not vary too much with the rate of discharge; but,

aside from these two requirements, the question whether the imaginary

ideal motion bears any close resemblance to reality is of no impor-

tance whatever.

We start by imposing the same conditions as for liquids, regarding

the distribution of velocity and pressure in the vicinity of the orifice

and the absence of energy losses. But since the density of a gas

depends on its pressure and temperature and changes as the gas

flows through the orifice, the ideal state of motion requires further

specification, either by making assumptions as to how the gas behaves

or by imposing conditions as to how it shall behave in the ideal case.

The most obvious conditions to impose are that the gas shall

follow the ideal gas equation pv =RT exactly, and that it shall not

gain or lose any heat by contact with the orifice plate or the walls

of the pipe. These supplementary conditions, with those previously

adopted for liquids, lead to the so-called " adiabatic equation " for

the theoretical rate of discharge and to a corresponding definition

of the discharge coefficient. This equation is important and useful

for some purposes, but it is much too complicated to be used in

ordinary practice and it need not be discussed here, though it will be

referred to again later.
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For the sake of obtaining a simpler result we adopt a condition

which makes the ideal state of motion to be treated by theoretical

principles much more unlike what really happens, and this condition

is that the density of the gas shall remain constant during the flow

through the orifice instead of. decreasing, as it does, in fact. But
imposing this condition is merely saying that the gas shall act like

a liquid, and therefore the reasoning to be gone through is an exact

repetition of what has already been given for liquids, and the result-

ing equations are precisely the same in form.

Only one more point remains to be specified. Having said that

the density shall be constant, we are still at liberty to say what the

constant value shall be and to select any value that is most con-

venient. In practice, the choice is usually made in one of the two

following ways.

Let

2?i[lb./in.
2
]
= the absolute static pressure at the upstream pressure

tap;

2?2[lb./in.
2
]
= the absolute static pressure at the downstream

pressure tap;

t[° F.] = the temperature of the gas ahead of the orifice, just

before the flow starts to converge;

pi[lb./ft.
3
]
= the density of the gas at plf i;

p2[lb./ft.
3
]
= the density it would have at p2 , t.

Then, in practice either px or p2 is taken as the density to be used in

the equations; that is, the gas is treated as a liquid of density either

pi or p2 . Introducing these specifications of the density into the

equations already obtained for liquids gives us from (13)

,, n 0.5250 ,, ,

—

^= ft Trr^2
VpiA (a)

or

and from (18)

or

VT

M=A^g#VM (6)

M= Ci' X 0.5250d2VM (c)

M= GJ X 0.5250d2VM (d)

(20)

We thus have four slightly different equations for computing the

true rate of flow M from the observed differential A, each of which
contains and defines one of the four coefficients €u <72 , (7/, and C2

''.

It is convenient to have descriptive names for these discharge

coefficients, and, to start with, they may all be called "hydraulic"

coefficients, to indicate that they are obtained by treating the gas as
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a liquid, and to distinguish them from the "adiabatic" discharge

coefficient which results from using the adiabatic equation mentioned

above. The following designations may now be adopted

:

Ci is "the hydraulic discharge coefficient based on the upstream

static pressure, with the approach factor not included";

C2 is "the hydraulic discharge coefficient based on the downstream

static pressure, with the approach factor not included;"

C\ is "the hydraulic discharge coefficient based on the upstream

static pressure, with the approach factor included"; and
C2

' is "the hydraulic discharge coefficient based on the downstream

static pressure, with the approach factor included."

These four kinds of discharge coefficients are evidently not inde-

pendent but connected by relations which permit of computing the

value of any one from that of any other. For example, we have

from (20) the relations

-<WsC,= qA ? (a)

(V^OiN^W TO (21)

This is merely another way of saying that the same set of experi-

mental results may equally well be expressed in any one of the four

ways, that is, by tables or curves giving values of any one of the four

discharge coefficients.

In the foregoing discussion of the meaning and definition of dis-

charge coefficients, the theoretical rate of discharge Mt and the true

rate M have been expressed in pounds per second, because when the

rates are expressed as mass per unit time the equations have a par-

ticularly simple form; but any other units might equally well have

been used without changing the values of the C's, because these

values are pure ratios and therefore independent of what units may
be used for measuring the two rates of discharge.

If other units were adopted, such as gallons per minute for liquids

or cubic feet per hour at standard pressure and temperature for gases,

equations (20) would have a somewhat different appearance. And,

similarly, measuring diameters in feet or centimeters instead of in

inches, or measuring differentials in inches of water or mercury

instead of in pounds per square inch, would change the value of the

numerical factor 0.5250. But no such changes in the units have any

effect on the values of the discharge coefficients.

Some of these other forms of equation, equivalent to (20), will be

given later with illustrative examples, but that may be postponed

until the results of the present experimental investigation have been

set forth and discussed.
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XI. OUTLINE OF THE METHODS OF COMPUTATION

Of the four kinds of discharge coefficients defined by equations (20),

only C\ was computed directly from the observations, the values of

the other three being found subsequently by means of (21). To
find the value of Ci} equation (20a) is put into the form

61 -0.525<? V^A
(22)

and the values of d, /3, M, A, and p 1; are substituted.

The internal diameter D of each of the three sizes of pipe at its

orifice station, and the diameter d of each of the orifices, were meas-

ured by ordinary methods which need not be described. The values

of the factor (Vi — (3*10.525d2
), which is a constant for each orifice,

i
were then computed once for all.

The values of A, M, and px varied from one experiment to another

and had to be determined from the observations in each case. The
differential A was read in inches of water, carbon tetrachloride, or

mercury and after reduction to pounds per square inch it was ready

;

for substitution in (22); but the values of M and px required some
preliminary computation.

Since the flow was kept as nearly as possible steady during each

experiment, the rate of flow through any orifice inserted in the
!

line was the same as the rate of discharge from the flow nozzle on

the end of the discharge trunk and was to be determined from obser-

vations there. The quantities required were: (a) The outside baro-

metric pressure, (b) the impact pressure at the center of the jet,

(c) the temperature of the air in the discharge trunk ahead of the

nozzle, and (d) the wet bulb depression read from the chart of the

recording psychrometer in the trunk. The calibration curve of

the nozzle having been determined by separate experiments, the

value of M could be computed from the observations just mentioned.

The remaining quantity needed for substitution in (22) is the

density pi, which is, by definition, to be computed for the upstream

static pressure p\ and the temperature t of the air just ahead of the

orifice. Since the air was not dry but contained a small admixture

of water vapor, the humidity had to be known so that allowance might

be made for the effect of the vapor.

Thep ressure p\ is the sum of the static gauge pressure at the

upstream tap and the outside barometric pressure. The static

gauge was usually connected to the upstream tap and the pressure

there observed directly, although since the differential was always

observed at the same time, the static gauge might equally well have

been connected to the downstream tap.

The temperature t was taken to be the mean of the temperatures

ti and t2 read at the upstream and downstream thermometer wells,
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each about 12 pipe diameters distant from the orifice plate. An
error of 1° F. in the value of t causes an error of 1/1,000 or less in the

value of Ci, and since this was small in comparison with the other

accidental errors of the experiments, an accuracy of ± 1 degree was
sufficient.

When the outside air was much hotter or colder than the air in the

pipe, the resulting heat leakage was sometimes enough to make m

and t2 differ by 2° or more, but in most of the experiments the differ-

ence was much less than this, and either ti or t2 could be used in place

of the mean value without causing any significant change in Ci. In

runs where this was found to be the case, further readings of one of

the thermometers were usually dispensed with.

In addition to the values of p\ and t, which would have sufficed if

the air had been perfectly dry, it was necessary to know what fraction

of the mixture consisted of water vapor. After the air entered the

test line it had no opportunity to take up more water, and the vapor

content could not increase. On the other hand, the pressure was
continually falling, while the temperature remained nearly constant,

so that the vapor in the expanding mixture was becoming mor.e dilute

and further from saturation and there was no tendency for water to

be precipitated. Hence, the composition of the moist air remained

unchanged along the line and was the same at each orifice as in the

discharge trunk where the psychrometer was situated.

A sufficiently accurate measure of the vapor content of the air is

provided by the value of the ratio ir/p, where p is the total pressure

of the mixture and ir is the partial pressure of the water vapor in it.

The value of ir/p was found for the air in the discharge trunk from

the observed pressure, temperature, and wet bulb depression. The
hygrometric tables in the " Smithsonian Meteorological Tables" were

used for this purpose. The value of ir/p thus found was applicable

to the air at higher pressures upstream, for reasons stated above.

The values of pi} t, and t/p being known, it was possible to com-

pute the value of pi from known data on the properties of dry air

and water vapor. The following values were used:

The density of dry air containing the normal amount of carbon

dioxide, at 32° F., and at the pressure of 1 atmosphere or 14.696

lbs. /in.
2

, was taken to be 0.08072 lb. /ft.
3 The coefficient of expansion

at the constant pressure of 1 atmosphere was taken to be 1/490 of

the volume at 32°, per degree. This is very close to the mean value

over the range 32° to 122°. Values of the (pv) product, needed in

determining the correction factor which allows for the departure

from Boyle's law, were taken from the "Warmetabelien" issued by
the Physikalisch-Technische Reichsanstalt. The specific gravity of

water vapor, referred to dry air at the same pressure and temperature,

was assumed to be 18/29.
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On the basis of the foregoing data, if air followed Boyle's law

exactly, the density of dry air at t°¥. and px lb. /in.
2 would be

!

-08072x
i4

2

l96
x4-f^r 2 -6914 m+i lb -/ft -

3

<
23 >

Within the range of pressure and temperature covered in these

experiments, the value of the (pv) product at any one temperature is

' not quite constant but decreases slightly as the pressure is raised.

Hence, the density at any pressure pi is greater than the Boyle's

law value given by (23) in the ratio

(pv) at t° and 14.7 lb./in. 2

_ v
{pv) at t° and p, lb./in.

2 Y (24)

Since the air is not dry but contains water vapor at the partial

pressure in, the partial pressure of the dry air in the mixture is only

(pi — xi). This substitution of water vapor for a part of the dry air,

without changing the total pressure, has the same effect on the

density as if a fraction -Kilpi of the dry air had been made lighter in

the ratio 18/29; or as if the fraction irifpi of the whole number of

molecules of air had been removed and replaced by the same number
of water molecules, which are only 18/29 as heavy. The density

as computed for dry air at pu i must, therefore, be multiplied by the

correction factor

^— = 1 - 0.38 ^ (25)
Vi Pi

The equation finally obtained from (23, 24, 25) is

^•^-J^K 1 - -38^ (26)

' and this was used for computing the values of pi to be substituted in

(22) for computing the value of ft.

To facilitate the work of computation, curves giving the values of

log Y in terms of px were drawn for each 10° from 32° to 112°. The
value of log Y for any values of pi and t could then be obtained by

interpolation from this set of curves.

Within the range of conditions covered by these experiments the

departure of air from Boyle's law increases with rising pressure or

falling temperature, but it is never large, and Y remains between

1.00 and 1.01. For example, if £>i
= 295 lbs./in.

2 and t = 42°, the cor-

rection factor is Y= 1.0092. Hence if Y were omitted from (26) the

value computed for px would be somewhat less than 1 per cent low

and the resulting value of ft, one-half per cent high. But this

represents an extreme case, for the pressure was usually much less

than 295 lbs./in.
2 and the temperature was seldom or never as low
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as 42°. Hence, in the great majority of instances the effect of the

departure from Boyle's law was insignificant and Y could be omitted

from (26) without affecting <7i by as much as 1 in 1,000.

It may be remarked here, however, that in some natural gases the

departures from Boyle's law are so much greater than in air that

when such a gas is to be metered through an orifice at high pressure,

failure to allow for these departures when interpreting the meter

readings may result in errors of several per cent.

The humidity correction was also always small. If the air were

completely saturated at as high a temperature as 90°, and its absolute

pressure were as low as 20 lbs. /in.
2

, the value of the humidity factor

would be 1 — 0.387ri/^i = 0.9868, so that the correction to d would be

nearly 0.7 per cent. But at lower temperatures or higher pressures

the possible concentration of water vapor is relatively less and the

correction is smaller. In many of the experiments it was negligible.

In computing the value of the correction term (0.387Ti/^i), it is

assumed that the air and the water vapor exert their partial pressures

independently, each as if the other were not present, and that each

of them follows the ordinary gas equation pv= RT. These assump-

tions are, of course, only approximately true; but when the water

content is low and the correction small, as it always was, they are

quite adequate to the purpose.

XII. LOCATION OF THE PRESSURE TAPS

In addition to the abrupt fall of pressure from the upstream to the

downstream side of the orifice plate, there are other variations of

pressure along the wall of the pipe near the orifice, particularly on

the downstream side, so that the differential observed at any given

rate of discharge depends on the distances of the pressure taps from

the orifice plate and the observations have no precise meaning un-

less these distances are specified. This may be done most satis-

factorily in terms of the diameter of the pipe as the unit, by stating

the values of IJD and Z2/D, where Zi and Z2 are the distances from the

upstream face of the orifice plate to the centers of the upstream and
downstream taps, and D is the inside diameter of the pipe.

Since there is nothing in the definitions of the discharge coeffi-

cients by equations (20) to fix the positions of the pressure taps, any
pair of distances might be adopted; but in American practice three

particular arrangements have become more or less standard, to the

exclusion of others. They may be designated and described as follows.

1. PIPE TAPS

The standard distances, expressed in pipe diameters, are Zi/Z) = 2.5

and l2/D = 8, but these distances need not be at all exact because in

both these regions the pressure varies slowly along the wall of the
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pipe and the tap may be displaced some distance from the standard

position without any appreciable effect on the discharge coefficient.

To the accuracy now attainable in the commercial use of orifice

meters, and so long as the diameter ratio of the orifice is not greater

than /3 = 0.6, a tolerance of at least ± 1 pipe diameter is permissible

in the distances of the taps from the orifice plate.

2. THROAT TAPS 2

The standard distances are IJD =1 and l2/D = 0.5.

3. FLANGE TAPS

The standard positions for the pressure holes are 1 inch from the

nearer face of the orifice plate, regardless of the thickness of the plate

or the diameter of the pipe, so that there are no standard values of

lxID and l2/D.

For orifices of diameter ratios up to /3 = 0.6, installed in 6-inch or

larger pipes, it seems probable that holes at any smaller distances

from the plate would give sensibly the same differential, and that 1

inch is merely a safe upper limit.3 But for orifices of larger diameter

ratio, or for much smaller pipes, this would no longer be true and the

positions of the pressure holes would need to be more accurately

specified. It would also be desirable to adopt a standard upper limit

to the thickness of the orifice plate, expressed as a fraction of the pipe

diameter.

There would be some advantages in abandoning this arrangement

in favor of one in which the pressures were taken off right in the

corner at the face of the plate through a narrow circumferential slit

left between the plate and the end of the pipe, as recommended by
Hodgson. 4

In the present investigation each orifice was tested with three com-

binations of pressure taps which corresponded, roughly, to those

mentioned above; and in each experiment the differentials were read

between the three pairs of taps, as nearly as practicable at the same

time and under the same conditions of flow. Auxiliary experiments on

the longitudinal distribution of pressure for orifices of various diameter

ratios made it possible to reduce the values obtained for Ci to what
they would have been with the taps in the standard locations. The

2 This designation is used here for lack of a better short term. Such appropriateness as it can claim con-

sists in the fact that on the downstream side of orifices of medium diameter ratio the lowest static pressure

is usually found at about one-half pipe diameter from the orifice plate, so that this section corresponds in

some measure to the throat of a Venturi. The term "Venturi taps" might, perhaps, be an acceptable

alternative.

» See Holbrook Gaskell, jr., Proc. Inst. Civ. Eng., 197, p. 250; 1913-14. Horace Judd, Trans. A. S. M. E.,

38, p. 331; 1916. J. M. Spitzglass, Trans. A. S. M. E., 44, p. 919; 1922.

4 J. L. Hodgson, The Orifice as a Basis of Flow-Measurement, Inst. Civ. Eng., Selected Engineering

Papers, No. 31; 1925,
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necessary corrections were usually quite negligible, but they were

applied when they were as large as 1 in 1,000. The discharge coeffi-

cients to be given are therefore to be regarded as referring to the three

standard combinations of pressure taps described above.

XIII. METHOD OF ANALYZING THE RESULTS

The three sets of results, each comprising about 360 separate

values of the coefficient Ci, were examined separately but treated in

the same general manner. Orifice plates of about the same diameter

ratio were grouped together, and the values of Ci obtained for each

group were plotted as ordinates against the values of the pressure

ratio #2/^1 = t as abscissas. A smooth curve was drawn to represent

the general run of the points, and the result was a set of curves

representing, approximately, the relation

Ci =f(r) (0 constant) (27)

for each of the mean values of (3 pertaining to the several groups of

orifices.

Values of Ci were then read from these smooth curves at r=1.00,

0.95, 0.90, . . . etc., and the values for each r were plotted against

the values of the diameter ratio /3. If the original curves had been

consistent with one another, the points of this second or cross plot-

ting would have fallen on a set of smooth curves

Ci=/i(/3) (r constant) (28)

but in reality they were somewhat scattered, showing that the first

set of curves required some modifications. By gradual readjustment

two consistent sets of smooth curves were obtained, which appeared

to represent the aggregate of all the values of Ci as well as could be

done.

Since such a process involves a good deal of judgment on the part

of the operator, it was carried through on the throat tap values

several times by each of two persons, at considerable intervals of

time, and the results were tabulated and compared. For diameter

ratios up to /3 = 0.5, the different independent estimates of the most

representative mean value of Ci, at any given value of the pressure

ratio r, seldom differed by as much as 0.5 per cent and were usually

closer together than that. But for the higher diameter ratios,

where the possible range of pressure ratios was short, on account

of the limited air supply, and where there were fewer observations,

the different estimates sometimes differed by as much as 1.5 per

cent.

After a good deal of study it was found that if the results obtained

in the 4-inch pipe were set aside for separate discussion, the values
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of ft for the 6 and 8 inch pipes could be represented satisfactorily by
empirical equations of the general form

Ci = ¥>(r,/3) (29)

the particular forms of the equation being different for the different

combinations of pressure taps.

In deciding on the form to be adopted for (29), two conditions had
to be satisfied. The first was that at any given pressure ratio r the

limiting value of ft as (3 approaches zero must be the same for all

three pairs of pressure taps. This is evident from the consideration

that when /? is very small the flow is merely a discharge from one

large space into another, with the fluid in each of the spaces so nearly

at rest that, aside from gravity, its pressure is sensibly the same on
all parts of the wall, and the location of the pressure taps is immaterial.

The empirical equations (29) for the three combinations had, therefore,

to become identical for /3 = 0.

The second condition arises from the fact that when the percentage

differential is very small and the pressure ratio P2/Pi
z= r approaches

1 unity, the effects of compressibility vanish and air behaves like a

liquid of the same kinematic viscosity. 5 This means that if the

influence of viscosity is negligible, as it was in all or nearly all of our

experiments, the value of ft for a given orifice and for very low per-

centage differentials must be the same as the discharge coefficient of

the orifice for water.

This familiar experimental fact would have provided a desirable

check on our limiting values of ft for r = 1 , if accurate values of C as

a function of (3 had been available for water. We did not find any

such values for orifices installed in pipes, which appeared to be more
trustworthy than an extrapolation from our own values for air, but

there is one particular value which seems pretty well fixed.

If the percentage differential is very small, and if the diameter

ratio is also very small, the value of ft for air must become identical

with the value for a submerged jet of water issuing from a round,

square-edged orifice in the wall of a large tank. This quantity has

been the subject of a great many measurements, and the best deter-

minations 6 show that when the Reynolds number 7
is high enough

that viscosity no longer has any appreciable influence, the value is

close to 0.597. This agrees well with a natural extrapolation from

our observed points to r=l and /3 = 0, and also with the experiments

of Bachmann 8 on air. We therefore adopted this figure as a funda-

mental value to which ft must converge when r=l and /3 = 0.

5 See Section XXIV.
6 See for example, Hamilton Smith's "Hydraulics," Chap. XI.
7 £e6 Section XXIV and Appendix C.
8 H. Bachmann, Dissertation, Darmstadt; 1911.
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The results obtained for 8 and 6 inch pipes did not show any
systematic differences greater than the accidental differences between

ostensibly similar orifices of the same size; but the coefficients for

the 4-inch pipe were, on the whole, distinctly higher. The tables

of discharge coefficients presently to be given are therefore to be

understood as representing our average results from 6 and 8 inch

plates only.

XIV. RESULTS FOR THROAT TAPS

Throat taps are, by definition, located one pipe diameter upstream

and one-half pipe diameter downstream from the upstream face of

the orifice plate. The definitions of the four familiar forms of dis-

charge coefficient, Ci, C2 , C\, and C'2 , are given by equations (20)

in Section X, above, and the relations between them are given by
equations (21).

Our average results for orifices in the 6 and 8 inch pipes are repre-

sented by the equation

d-b.597a4~O.O90*- 0.115 (x+x 2
)(l + 1.5/3

4
) (30)

in which

Pi
(3D

that is, x is the differential, expressed as a fraction of the upstream

static pressure.

Values of <7X computed from (30) are given in Table 4.

Table 4.

—

Throat taps

[Values of &, the hydraulic discharge coefficient based on the upstream static pressure, with the approach
factor not included]

a= 0.5970+0.09/54-0.115 Cr+z2
) (1+1.5/3*)

0= 0.0 0.2 0.3 0.4 0.5 0.55 0.6

r=
1.00
.95
.90

.85

.80

.75

.70

.65

.60

.55

.50

0.597
.591
.584

.577

.569

.561

.552

.543

.533

.522

.511

0.597
.591
.584

.577

.569

.561

.552

.543

.533

.522

.511

0.598
.592
.585

.578

.570

.561

.552

.543

.533

0.599
.593
.586

.579

.571

.562

.553

.543

0.602
.596
.589

.581

.572

.563

0.605
.598
.591

.583

.574

0.609
.601
.593

.585

The shortening of the later columns is due to the limited compressor

capacity, which made it impossible to attain high differentials with

the larger orifices.

Equation (30) is purely empirical and should not be relied on out-

side the limits shown by the table. We had some observations on
the smaller orifices at pressure ratios as low as r=0.3, and the equa-

tion appears to fit these points within the experimental errors, but
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there were relatively few of these observations, and we prefer not to

trust the equation for pressure ratios lower than shown in the table.

As regards higher values of /3, our observations were not satis-

factory. Even for the smaller diameter ratios, the accidental errors

were large and the resulting points much scattered, when the per-

centage differential was low; and in no case would the observations

at pressure ratios greater than r= 0.95 have sufficed, by themselves,

to determine a curve Ci=f(r). At higher percentage differentials

the observations were more consistent and for the plates of small

or medium diameter ratios, which could be tested over a large range

of values of r, a fairly good determination of the mean curve was
possible. But with large diameter ratios the possible range of r was
narrower and the scattering worse.

For example, with two orifices for which /3 = 0.6904 and 0.7042, 13

values of d obtained at pressure ratios greater than r = 0.956 were

distributed irregularly between 0.598 and 0.643. In another case

with four orifices, of diameter ratios from 0.780 to 0.802, 15 values of

C\ obtained with pressure ratios down to r— 0.967, were scattered

between 0.610 and 0.664, with one additional value at 0.713.

In both these instances the mean value of Ci was within one-fourth

per cent of the value computed from equation (30) for the mean
values of x and /3, and it seems probable that, for low percentage

differentials, the equation gives a fairly good representation of the

facts for 6 and 8 inch pipes up to /3 = 0.8; but we do not recommend it

for use when the diameter ratio of the orifice is greater than /3 = 0.6,

the limit shown in the table.

After the values of Ci had been obtained those of C2 , C\, and C2 ,

defined in Section X, were found from them by means of equations

(21), and the results corresponding to Table 4 are given in Tables

5, 6, and 7.

Table 5.

—

Throat taps

[Values of d, the hydraulic discharge coefficient based on the downstream static pressure, with the
approach factor not included]

C2=C>m
/3= 0.0 0.2 0.3 0.4 0.5 0.55 0.6

r=
1.00
.95
.90
.85

.80

.75

.70

.65

.60

.55

.50

0.597
.606
.616
.626

.637

.648

.660

.673

.688

.704

.722

0.597
.606
.616
.626

.637

.648

.660

.673

.688

.704

.722

0.598
.607
.617
.627

.637

.648

.660

.673

.688

0.599
.608
.618
.628

.638

.649

.661

.673

0.603
.611
.621
.630

.640

.650

0.605
.614
.623
.632

.642

0.609
.617
.626
.634

!
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Table 6.

—

Throat taps

[Values of C\, the hydraulic discharge coefficient based on the upstream static pressure, with the approach
factor included]

0= 0.0 0.2 0.3 0.4 0.5 0.55 0.6

r=

LOO 0.597 0.598 0.600 0.607 0.622 0.635 0.652
.95 .591 .592 .594 .601 .616 .628 .645
.90 .584 .585 .587 .594 .608 .620 .636
.85 .577 .578 .580 .586 .600 .611 .627

.80 .569 .570 .572 .578 .591 .602

.75

.70

.65

.561

.552

.543

.562

.553

.543

.564

.555

.545

.569

.660

.550

.582

.60

.55
.533
.522

.533

.522
.535

.50 .511 .511

Table 7.

—

Throat taps

[Values of C't, 'the hydraulic discharge coefficient based on the downstream static pressure, with the
approach factor included]

C"2= d/^T^J*

0= 0.0 0.2 0.3 0.4 0.5 0.55 0.6

r=

1.00
.95
.90
.85

.80

.75

.70

.65

.60

.55

.50

0.597
.606
.616
.626

.637

.648

.660

.673

.688

.704

.722

0.598
.607
.617
.627

.637

.648

.661

.674

.688

.704

.723

0.600
.609
.619
.629

.640

.651

.663

.676

.690

0.607
.616
.626
.636

.646

.657

.669

.682

0.622
.631
.641
.651

.661

.672

0.635
.644
.653
.663

.673

0.652
.661
.671
.680

Table 8 contains values of a fifth discharge coefficient Cmf defined

in analogy with (20) by writing

0.5250M= Cm^W d2^pmA (32)

in which pm is the density of the air at t° F. and at the mean pressure

It is connected with d by the equation

Cm — Ci
2_

2-x

(33)

(34)

and might be designated as "the mean hydraulic discharge coefficient

with approach factor not included."
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The corresponding quantity

C'^CJJl^p (35)

might then be called "the mean hydraulic discharge coefficient with

approach factor included."

Table 8.

—

Throat taps

[Values of Cm, the mean hydraulic discharge coefficient, with the approach factor not included]

(8- 0.0 0.2 0.3 0.4 0.5 0.55 0.6

1.00
.95
.90
.85

.80

.75

.70

.65

.60

.55

.50

0.597
.599
.600
.600

.600

.600

.599

.597

.595

.593

.590

0.597
.599
.600
.600

.600

.600

.599

.597

.595

.593

.590

0.598
.599
.600
.601

.601

.600

!597

.595

0.599
.601
.601
.602

.602

.601

.599

.598

0.603
.604
.604
.604

.603

.602

0.605
.606
.606
.606

.605

0.609
.609
.609
.609

Table 9 contains values of the "adiabatic" discharge coefficient

C& found from those of d by means of the relation

p(l-r)(l--flV*)-|»

(36)

Readers who are interested in this quantity may be assumed to be

already familiar with the theoretical considerations on which the

definition of C& is based. They are usually set forth in works on
technical thermodynamics and are similar to those involved in the

theory of the flow nozzle discussed in Appendix A to the present

paper.

Table 9.

—

Throat taps

[Values of Ca , the adiabatic discharge coefficient]

e« 0.0 0.2 0.3 0.4 0.5 0.55 0.6

r=

1.00
.95
.90
.85
.80

.75

.70

.65

.60

.55

0.597
.608
.618
.630
.642

.656

.670

.686

.704

.724

0.597
.608
.619
.630
.643

.656

.670

.686

.704

.724

0.598
.608
.619
.631
.643

.657

.671

.687

.705

0.599
.610
.622
.633
.646

.660

.674

.690

0.603
.614
.626
.638
.652

.666

0.605
.617
.630
.643
.656

0.609
.621
.635
.648
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The relations of the various discharge coefficients to one another

and to the pressure ratio and diameter ratio may be exhibited most
clearly by curves drawn from the tabulated values, either with r as

abscissa for constant 0, or with /3 as abscissa for constant r. A few

such diagrams may be given.

Figure 5 shows curves drawn with r as abscissa for the limiting

diameter ratio /3 = 0; that is, for a small orifice between two large

spaces. Since the differential is independent of the positions of the

pressure taps, when is sufficiently small, these curves are applicable

Fig. 5.

—

Variation of discharge coefficients vrith pressure ratio,

for small diameter ratios (Tables 4, 5, 8, and 9)

to all three types of pressure connection. Moreover, when is very

small, the curves for C\, C'2 , and Cm ' become identical with those for

Cit C2 , and Cm , respectively.

The following points may be noted

:

(a) As r decreases and the differential becomes a larger and larger

fraction of the upstream static pressure, d decreases only about two-

thirds as fast as C2 increases. In other words, the discharge coeffi-

cient Ci 9
based on the density at the upstream pressure, is somewhat

less affected by changes of the pressure ratio than is the coefficient

(72 ,
based on the downstream pressure.



|i Bean, Buckingham,
"\

Murphy J
Discharge Coefficients of Orifices 593

(6) The values of C2 are not greatly different from those of the

"adiabatic" coefficient C& .

(c) The mean coefficient Cm , defined by (34), is nearly constant

over a wide range of pressure ratios. If the indicating and recording

mechanism of an orifice

meter were so designed as

to be actuated by the mean
of the two static pressures,

the meter could be used

without any correction for

change of coefficient with

pressure ratio, over a much
wider range than when only

one of the two static

pressures is employed. By
using a pressure somewhat
nearer the lower of the two,

the first part of the curve

for Cm might be made very

close to a horizontal straight

line.

When the diameter ratio

is not very small and the dif-

ferentials measured between

the different pairs of taps are appreciably different, the diagrams will

be different for the three pairs, and the curves for C\, C'2) and C'm
will not coincide with those for Ci, C2 , and Cm . The curves for throat

taps and for the diameter ratio /3 = 0.5 are given in Figure 6.

ffrnWin+ffi+H-K?^ I i i 1 i H+tii ' I
I i i ll T i lffifTil iTITI i

:3H
'

Fig. 6.

—

Discharge coefficients for 0=0.5 and

for throat taps (Tables 4 to 9)

JS"I

pi

|j:::} 4:tim

mtt1* it S|::
liilllili

Sf-1
:Sh:J j

Fig. 7.

—

Variation of C\ and Ct with area ratio for throat taps

Another mode of representation is illustrated in Figure 7, in which
the abscissa is

2
, or the ratio of the area of the orifice to the cross

section of the pipe, and each curve refers to a constant pressure ratio

instead of to a constant diameter ratio as in Figures 5 and 6.

14830°—29 3
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The middle curve gives the limiting values of both ft and ft for

vanishingly small differentials, on the supposition that the effects

of viscosity are negligible. The two lower curves give the values of

ft for differentials of 5 and 10 per cent of the unstream pressure, and

the two upper curves give the corresponding values of ft.

Since equation (30) is linear in /5
4 for any fixed value of x, all these

curves would be straight lines if /5
4 were used as abscissa instead of the

area ratio /3
2

.

XV. COMMENTS ON THE RESULTS FOR THROAT TAPS

The values given in Tables 4 to 9 are rounded off from values com-

puted to four decimal places, and since they have not been further

smoothed, the run of the differences is sometimes irregular by one

unit in the third place. But even the third figure has little general

significance as regards absolute values.

Equation (30) represents the mean of our results for the 6 and 8

inch pipes over the ranges of r and /3 covered by the tables, and it

indicates what may be expected, on the average, from such orifices

as were described in Section III when (a) they are installed in long

straight runs of pipe, (5) the flow is steady, and (c) the product of the

differential in inches of water, the mean static pressure in pounds per

square inch, and the square of the orifice diameter in inches is not less

than 10. 9 But the values of ft for individual orifices showed system-

atic departures of as much as 1 per cent, and occasionally more, from

the average represented by equation (30).

These individual pecularities were most marked among the smaller

orifices, in which a given degree of imperfection of the upstream corner

of the orifice is relatively more important than for larger orifices. It

was thought, at first, that these unexpectedly large differences of

behavior between orifice plates of the same diameter ratio could be

referred to differences in the ratio of the width of the cylindrical edge

to the diameter of the orifice, but this explanation was found to be
inadequate. For experiments on a series of cylindrical orifices in

flat plates of various thicknesses showed that so long as the thickness

was less than one-fourth of the diameter of the hole its value was
unimportant. This result agreed perfectly with the results obtained

by S. J. G. Thomas 10 for much smaller orifices.

We are left with the impression that it is a difficult matter to pro-

duce a number of duplicate plates which will all give the same dis-

charge coefficient within ± 0.3 per cent.

The 4-inch plates gave higher values of ft than the 6 and 8 inch

plates and for any given diameter ratio the mean curve ft=/(x)

9 See Section XXIV and Appendix C.
i° Phil. Mag., 44, p. 969; November, 1922.
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for the 4-inch plates would lie about 1.5 per cent higher than the

mean curve for the 6 and 8 inch plates, represented by (30).

The values of ft for individual 4-inch plates differed from their

mean by amounts up to ±1.5 per cent; that is, they were from

nothing up to 3 per cent higher than values computed from (30).

One 4-inch plate gave values of ft low enough to agree very well

with (30). It had been noted, after microscopic examination, as

having a "poor edge, rough and ridged/' and this imperfection

doubtless accounted for its departing so far from the mean of the

4-inch plates. This was one of the bureau plates, of diameter ratio

/3 = 0.3295.

The range of variation of the values of ft for the 4-inch plates

from their mean, or ±1.5 per cent, was somewhat greater than the

similar range for the 6 and 8 inch plates about their mean, repre-

sented by (30). Moreover, with the 6 and 8 inch plates the depar-

tures from the mean were most pronounced for the small values of

]8; that is, on the whole, for small absolute diameters. Both these

facts point to the necessity of greater perfection of workmanship

for small than for large orifices, if any standard table of discharge

coefficients is to be relied upon.

Possible reasons for the high values of ft obtained from the 4-inch

plates will be suggested in Section XXV.

XVI. RESULTS FOR FLANGE TAPS

The pair of flanges for holding the 8-inch orifice plates was one

loaned to us by the Hope Natural Gas Co., and the holes for the

pressure connections were approximately at the standard distances

of 1 inch from the nearer face of the plate. In the 6-inch flanges,

which were made at the Bureau of Standards, these distances were

about three-fourths inch, so that for the 8 and 6 inch pipes the

pressure taps were not equally distant from the plate, but at distances

proportional to the diameter of the pipe. With pipes as large as

6 inches in diameter, such small variations have no appreciable

effect on the differential, or on the discharge coefficient computed
from it, unless the diameter ratio is considerably higher than /3 = 0.6.

Our average results for orifices in the 6 and 8 inch pipes are repre-

sented by the equation

ft = 0.5970 + 0.12|6
4 -0.6/312 -0.115(z + x2)(l + 1.5j3

4
) (37)

in which, as before,

^Jb-X*^.-* (38)

Values of ft computed from (37) are shown in Table 10 and the

corresponding values of ft, C\, C2, and Cm in Tables 11 to 14.
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Table 10.

—

Flange taps

[Vol.

[Values of &, the hydraulic discharge coefficient based on the upstream static pressure, with the approach
factor not included]

Ci=0.5970+0.12^-0.6/3»-0.115(a;+a:2)(l+1.5/34)

/3= 0.0 0.2 0.3 0.4 0.5 0.55 0.6

r=

1.00 0.597 0.597 0.598 0.600 0.604 0.608 0.611
.96 .591 .591 .592 .594 .598 .601 .604
.90 .584 .585 .585 .587 .591 .593 .596
.85 .577 .577 .578 .579 .583 .585 .588

.80 .569 .570 .570 .571 .574 .576

.75

.70

.65

.60

.55

.50

.561

.552

.543

.533

.522

.511

.561

.552
543

.533

.522

.511

.562

.553

.543

.533

.563

.553

.543

.565

Table 11.

—

Flange taps

[Values of Ci, the hydraulic discharge coefficient based on the downstream static pressure, with the
approach factor not included]

ft= C^T-

0= 0.0 0.2 0.3 0.4 0.5 0.55 0.6

r=

1.00
.95
.90
.85

.80

.75

.70

.65

.60

.55

.50

0.597
.606
.616
.626

.637

.648

.660

.673

.688

.704

.722

0.597
.606
.616
.626

.637

.648

.660

.673

.688

.704

.722

0.598
.607
.617
.627

.637

.648

.660

.673

.688

0.600
.609
.619
.629

.639

.650

.661

.674

0.604
.613
.622
.632

.642

.653

0.608
.616
.625
.634

.644

0.611
.620
.628
.637

Table 12.

—

Flange taps

[Values of C\, the hydraulic discharge coefficient based on the upstream static pressure, with the approach
factor included]

0= 0.0 0.2 0.3 0.4 0.5 0.55 0.6

r=

1.00
.95
.90
.85

.80

.75

.70

.65

.60

.55

.50

0.597
.591
.584
.577

.569

.561

.552

.543

.533

.522

.511

0.598
.592
.585
.578

.570

.562

.553

.543

.533

.522

.511

0.600
.594
.587
.580

.572

.564

.555

.545

.535

0.608
.602
.595
.587

.579

.570

.561

.551

0.624
.617
.610
.602

.593

.584

0.637
.630
.622
.614

.604

0.655
.647
.639
.630
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Table 13.

—

Flange taps

197

[Values of €'%, the hydraulie discharge coefficient based on the downstream statie pressure, with the
approach factor included]

/?= 0.0 0.2 0.3 0.4 0.5 0.55 0.6

r=

1.00
.85
.90
.85

.80

.75

.70

.65

.60

.55

.50

0.507
.606
.616
.626

.637

.648

.660

.673

.688

.704

.722

0.598
• .607

.617

.627

.637

.649

.661

.674

.688

.704

.723

0.600
.610
.619
.629

.640

.651

.663

.676

.691

0.608
.617
.627
.637

.647

.658

.670

.683

0.624
.633
.643
.658

.663

.674

0.637
.647
.656
.666

.676

0.655
.664
.674
.683

Table 14.

—

Flange taps

[Values of Cm , the mean hydraulic discharge coefficient, with the approach factor not included]

p- 0.0 0.2 0.3 0.4 0.5 0.55 0.60

1.00 0.597 0.597 0.598 0.600 0.604 0.607 0.611
.95 .599 .599 .599 .601 .605 .608 .612
.90 .600 .600 .600 .602 .606 .609 .612
.85 .600 .600 .601 .602 .606 .608 .611

.80 .600 .600 .601 .602 .605 .607

.75

.70

.65

.60

.55

.50

.600

.599

.597

.595

.593

.590

.600
-.599

.598

.595

.593

.590

.600

.599

.598

.596

.602

.600

.598

.604

Tables of C'm and (7a may readily be computed by means of equa-

tions (37, 34, 35, 36), but since these two forms of the coefficient are

not in common use they may be omitted. The table for Cm is given

in order to call attention again to the advantage of this quantity.

Values of G'm would have the same property of approximate in-

dependence of the pressure ratio for orifices of any one diameter ratio.

Equation (37) satisfies the condition of reducing to identity with

(30) when /S = 0. Like (30), it is a purely empirical representation

of the observed facts, and it does not lay claim to validity outside

the limits shown by the tables, although it does, in fact, represent

such observations as were made outside these limits with about the

same accuracy as equation (30) for the throat tap combination.

Figure 5, for = 0, is applicable to flange taps, as already remarked.

The curves for =0.5 would be very like those of Figure 6, and since

the information they would convey is all contained in the tables it

seems unnecessary to give them.
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XVII. COMMENTS ON THE RESULTS FOR FLANGE TAPS

Much the same comments may be made here as in Section XV
with regard to throat taps. Equation (37) represents the average

results obtained from orifices installed in the 6 and 8 inch pipes, but
the values of Cx for individual orifices departed from the mean in

the same way and by about the same amounts as when the differ-

entials were measured between the throat taps.

The 4-inch plates likewise behaved as described in Section XV.
One of them agreed with the equation, but the others gave values

of & from 0.3 to 3.2 per cent higher than computed from (37), the

average excess being about 1.3 per cent.

In one respect the results for flange taps differ from those for throat

taps. This difference is shown by Figure 8, in which F is the limiting

curve Ci=j{$2
) for x = and for flange taps, while T, repeated from

Figure 7, is the corresponding curve for throat taps.

Fig. 8.

—

Limiting values of Ci at loio differentials for throat taps (T) and flange
taps (F)

As 13 increases from very small values, where both arrangements
of taps give the same differential, Cx increases more rapidly for flange

than for throat taps, as indicated by the term 0.12/3
4 in (37) compared

with 0.09/3
4 in (30). The pressure is a little higher near the plate

than it is one-half pipe diameter downstream, so that the differential

is lower and the discharge coefficient higher, and this difference

increases with ft up to about = 0.6 or 2 = O.36.

But as j8 increases, the downstream minimum of pressure moves up
toward the plate and the pressure at the flange tap falls, relatively

to that at the throat tap. The effect of this is that as /3 continues
to increase, the difference between the differentials measured in the
two ways increases less rapidly, reaches a maximum, and then falls

off, the two values of Gx approaching each other. At some point,
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indicated by P in Figure 8, the curves cross, and thereafter the

discharge coefficient is lower for flange than for throat taps.

Assuming that the equations (30) and (37) from which the curves

are drawn remain valid for /3>0.6, and that the dotted portions of

the curves are approximately correct, the crossing occurs at about

|8
2 = 0.475 or /3 = 0.69. For still higher diameter ratios, the value of

Ci for the flange taps decreases and, as shown by our experiments,

it is lower at /3 = 0.79 than at = 0.70, and still lower at = 0.83.

These peculiarities of the curve for flange taps are sufficiently well

represented by the inclusion of the term — 0.6/3
12 in (37). More

extensive and more accurate experiments would doubtless permit of

improving the empirical equations for both flange and throat taps,

but the present forms of (30) and (37) seem to be as good as the

observations they purport to represent.

XVIII. RESULTS FOR PIPE TAPS

Pipe taps are, by definition, placed 2.5 pipe diameters upstream

and 8 pipe diameters downstream from the orifice plate.

Our average results for orifices in the 6 and 8 inch pipes may be

represented by the equation

O1
= 0.5970 + 0.006/5 + 0.54/3

2 -3 + |8^
2 -0.115(x+x2

)(l + ll/33 ) (39)

in which

(40)
Pi

Values of Ci computed from (39) are given in Table 15 and the

corresponding values of C2 , C\, and C'2 in Tables 16, 17, and 18.

Table 15.

—

Pipe taps

[Values of &, the hydraulic discharge coefficient based on the upstream static pressure, with the approach
factor not included.]

a=O.597O+O.OO6/S-l-O.5402.3+/33x 2 -O.115(2:+a:2) (1+11/33)

0= 0.0 0.1 0.2 0.3 0.35 0.4 0.45 0.5 0.55 0.6

r=

1.00
.95
.90
.85

.80

.75

.70

.65

.60

.55

.50

0.597
.591
.584
.577

.569

.561

.552

.543

.533

.522

.511

0.600
.594
.588
.580

.572

.564

.555

.545

.535

.525

.513

0.612
.605
.598
.590

.582

.573

.563

.553

.543

.532

.520

0.633
.625
.617
.608

.598

.588

.577

.565

.553

.541

0.647
.639
.629
.619

.608

.597

.585

.573

.559

0.665
.655
.645
.633

.621

.608

.594

.580

0.686
.674
.661
.648

.634

.619

.604

0.710
.696
.681
.665

.649

.632

0.737
.720
.703
.684

.665

0.767
.748
.727



600 Bureau of Standards Journal of Research [Vol. 2

Table 16.

—

Pipe taps

[Values of d, the hydraulic discharge coefficient based on the downstream static pressure, with the
approach factor not included]

Ci=q

jS= 0.0 0.1 0.2 0.3 0.35 0.4 0.45 0.5 0.55 0.6

1.00
.95
.90
.85

.80

.75

.70

.65

.60

.55

.50

0.597
.606
.616
.626

.637

.648

.660

.673

.688

.704

.722

0.600
.610
.619
.629

.640

.651

.663

.677

.691

.707

.726

0.612
.621
.630
.640

.650

.662

.674

.686

.701

.717

.735

0.633
.641
.650
.659

.669

.679

.690

.701

.715

.729

0.647
.655
.663
.672

.680

.'690

.700

.710

.722

0.665
.672
.679
.686

.694

.702

.710

.720

0.686
.691
.697
.708

.709

.715

.722

0.710
.714
.718
.722

.726

0.737
.739
.741
.748

.744

0.767
.767
.766

Table 17.

—

Pipe taps

[Values of C"i, the hydraulic discharge coefficient based on the upstream static pressure, with the approach
factor included]

p- 0.0 0.1 0.2 0.3 0.35 0.4 0.45 0.5 0.55 0.6

1.00 0.597 0.600 0.612 0.635 0.652 0.674 0.700 0.733 0.765 0.822
.95 .591 .594 .605 .627 .643 .663 .688 .718 .748 .801
.90 .584 .588 .598 .619 .634 .653 .675 .703 .780 .779
.85 .577 .580 .591 .610 .624 .641 .662 .687 .711

.80 .569 .572 .582 .600 .613 .629 .648 .670 .691

.T8

.70

.65

.60

.55

.561

.552

.543

.538

.522

.564

.555

.546

.535

.525

.573

.564

.554

.543

.532

.590

.579

.568

.556

.543

.602

.590

.577

.564

.616

.602

.888

.633

.617
.653

i

.50 .511 .513 .520

Table 18.

—

Pipe taps

[Values of C'i, the hydraulic discharge coefficient based on the downstream static pressure, with the
approach factor included]

0= 0.0 0.1 0.2 0.3 0.35 0.4 0.45 0.5 0.S5 0.6

1.00 0.597 0.600 0.612 0.635 0.652 0.674 0.700 0.733 0.765 0.822
.95 .606 .610 .621 .644 .660 .681 .706 .737 .767 .822
.90 .616 .619 .631 .653 .668 .688 .712 .741 .769 .821
.85 .626 .629 .641 .662 .677 .695 .718 .745 .771

.80 .637 .640 .651 .671 .685 .703 .724 .749 .773

.75

.70

.65

.60

.55

.50

.648

.660

.673

.688

.704

.722

.651

.603

.677

.691

.707

.726

.662

.674

.687

.701

.717

.736

.681

.692

.704

.717

.732

.695

.705

.716

.728

.711

.720

.729

.730

.737
.754
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Like equations (30) and (37), equation (39) is not to be regarded

as valid beyond the limits of r and /3 for which values are given in

the tables.

' XIX. COMMENTS ON THE RESULTS FOR PIPE TAPS

Over the range of r and /3 covered by the tables, the values of ft

for individual plates of the 6 and 8 inch sizes departed from the mean
values, represented by the empirical equation (39), in the same way
as was found to occur with throat and flange taps, though the depar-

tures were, if anything, not quite so large.

With the exception already noted, the 4-inch plates gave systemati-

cally higher values of ft than those computed from (39).

If we exclude from consideration two further plates on which only

a very few observations were made, there remain nine of the 4-inch

plates having diameter ratios from 0.1992 to 0.6125. For these

plates the excess of ft over the value computed from (39) ranged

from 0.4 per cent to 1.9 per cent, with a me^an of 1.1 per cent. For

the same set of plates the corresponding figures for throat taps are

0.5 to 2.7, mean 1.4; and for flange taps they are 0.3 to 2.3, mean 1.1.

The figure for any one plate is, of course, an average from the

separate values obtained with that plate; and since the observations

were seldom numerous enough to determine a curve for a single plate

with any great precision, the figures just given for the individual

plates must be regarded as uncertain by at least ± 0.3 per cent.

XX. COMPARISON OF THE THREE SETS OF RESULTS

Since the equations which have been devised for representing our

results are purely empirical, they might, of course, be somewhat
varied, or possibly replaced by others of quite different appearance.

But such other equations would have to represent the same facts by
giving approximately the same numerical values of ft over the speci-

fied ranges of r and (3, and the equations as they stand provide

adequate means for comparing the three kinds of result.

For convenience of comparison, the equations may be reproduced

here in the following forms

:

For throat taps (30)

ft~0.5970 + 0.09/^[-0.115(z+x2)(l + 1.5/3
4
)] (41)

For flange taps (37)

ft = 0.5970 + 0.09
i
3
4 + 0.03

i
8
4
-0.6i3

12[-0.115(a;+x2)(l + 1.5/3
4
)] (42)

For pipe taps (39)

ft = 0.5970 + 0.006/? + 0.54/3
2 -3[-0.115 (x+x2

)(l + 11/S
3
) + (3

3x2
] (43)
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In each case the terms involving x have been placed within the

square brackets [ ], and since these terms vanish when x = 0, the earlier

terms alone give the limiting form of the equation for very low per-

centage differentials.

The terms within the [ ] represent the changes of ft, with increas-

ing x, for any fixed value of /?. Their presence is necessitated by

the fact that the air expands as its pressure falls. If there were

no such expansion, these terms would be absent, and the earlier terms

therefore, represent, according to an extrapolation from our experi-

mental results, what is to be expected for water—always on the

supposition that the effects of viscosity do not become appreciable.

In the limiting case of very small diameter ratios, and therefore

negligible speed of flow at all points not close to the orifice, the three

equations degenerate into the single form

Ci = 0.5970-0.115 (x+x2
) (44)

thus satisfying the conditions mentioned in Section XIII.

Equations (41) and (42) are much alike. Of the two additional

terms +0.03/34 and — 0.6/3
12

, which appear in (43), the first represents

the fact that as ft increases from very small values the differential

between the flange taps is, at first, less than between the throat

taps. The second term, which ultimately more than offsets the

first, represents the effect of the displacement of the downstream

pressure minimum toward the orifice. This displacement is slow

and of little importance, so long as ft is small, but has a marked
influence later on, as was illustrated in Figure 8.

In contrast with (41) and (42), equation (43) is of a very different

and more complicated form. This difference reflects the different

physical nature and greater complexity of the phenomena which

determine the differential when the region in question extends far

enough downstream to include the zone of maximum restoration of

pressure, instead of stopping at a section 0.5 pipe diameter from the

orifice, or approximately at the minimum of static pressure.

In defining the discharge coefficient of an orifice for a liquid we
make use, first, of the conception of a "theoretical" jet speed which

would occur if the whole observed fall of pressure were due to, or

were used up in producing, acceleration of the fluid. In practice,

there is very little dissipative resistance, as far as the vena contracta,

and the speed of the jet there is nearly equal to the theoretical speed

which would be computed from the fall of pressure between the

undisturbed stream ahead of the orifice and the vena contracta.

If the theoretical rate of discharge could then be computed from
the cross section of the vena contracta, it would agree very closely

with the actual discharge, and the discharge coefficient would be

nearly unity, as it is for a well-made flow nozzle or Venturi. In

practice, the computation has to be made with the area of the orifice
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because the cross section of the vena contracta is unknown, and the

computed rate of discharge is correspondingly increased. And if the

differential used in the computation is the true fall of static pressure

from the undisturbed stream ahead of the orifice to the vena con-

tracta, the discharge coefficient obtained will be very nearly identical

with the contraction coefficient, denned as the ratio of the cross

sectional area of the jet at the vena contracta to the area of the

orifice.

In a cylindrical jet the static pressure must be uniform over any
section and equal to the pressure just outside. So long as the diam-

eter ratio is not large and the vena contracta is still at some distance

from the orifice, the profile of the jet in the vicinity of the vena

contracta is not sharply curved, and the relation just mentioned must
be approximately true.

In practice, the downstream static pressure is observed at the wall

of the pipe and not in, or just outside, the vena contracta. But
visual observations with glass pipes n have shown that the minimum
of pressure at the wall occurs at the same section of the pipe as the

vena contracta, and it has commonly been assumed that this minimum
pressure is equal to the static pressure in the vena contracta. While

this can hardly be very accurately true, it seems probable that it is

nearly so for diameter ratios not greater than /3 = 0.6; and in the

absence of further evidence the assumption may be accepted as

nearly true.

From this it follows that if the downstream tap is placed at the

point of minimum pressure or maximum differential the discharge

coefficient obtained is very nearly equal to the contraction coefficient.

And since the minimum pressure is sensibly the same as the pressure

at the downstream throat tap, so long as jS<0.6, we may regard the

discharge coefficient with approach factor not included, obtained from

observations with throat taps, as a fairly accurate representation of

the contraction coefficient.

Except for the disturbing effects of viscosity, which are usually

small in practice, the profile of a jet of liquid from a round, square-

edged orifice is independent of the speed; the contraction coefficient

remains constant; and the discharge coefficient is independent of the

magnitude of the differential. But with a gas the phenomena are

somewhat different.

Since the static pressure of the jet does not fall to its lowest value

until the vena contracta is reached, it is higher hi the converging

part of the jet between the orifice and the vena contracta than the

pressure in the surrounding space. This transverse gradient of

pressure causes the gas to expand laterally, as well as forward, with

" Experiments by E. Q. Bailey, Keport of the Special Research Committee on Fluid Meters of the Ameri-

can Society of Mechanical Engineers, 2d ed., pp. 34, 35; 1927.
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the result that the section of the vena contracta is larger than it would

be for a nonexpanding liquid, and the difference increases as the

percentage differential increases.

The effect of this change in the contraction coefficient is clearly

shown by the increase of the "adiabatic" discharge coefficient Ca .

Except for the ignoring of contraction, the assumptions on which

the theoretical "adiabatic" rate of flow is computed corresponds

very closely to reality; and if the downstream tap is so placed as to

give the static pressure of the jet in the vena contracta, the value

obtained for Oa is nearly identical with the contraction coefficient.

The curves marked G& , in Figures 5 and 6, therefore, show approxi-

mately how the section of the vena contracta increases relatively

to the area of the orifice as the percentage differential increases and

the difference of behavior between air and water becomes more and

more pronounced.

Turning, now, to the consideration of the pipe tap arrangement,

we find a different state of affairs. The assumption that the frictional

resistances are negligible, and that changes of static pressure represent

changes in speed, is nearly true for the region included between the

throat taps; but when extended to the whole region between the

pipe taps it becomes totally false, and the bodily transfer of the

algebra developed for throat taps to the case of pipe taps, while

perfectly legitimate and justifiable on the score of expediency, does

not represent any physical reality.

The differential between the pipe taps is merely the over-all loss of

static pressure between the two taps, due to dissipative resistance.

With a liquid, and supposing the diameter of the pipe to be the

same at both taps, there is, on the whole, no acceleration at all and no

appreciable change of kinetic energy. And in the case of a gas there is

only the—usually quite insignificant—increase of linear speed due

to the fact that the density falls with the pressure, and that the

product of speed and density must remain constant if the flow is to be

steady. The orifice plate interposed between the two taps acts

merely as an obstruction which introduces a large resistance and so

concentrates a pressure drop great enough for convenient measure-

ment within a short length of pipe—10 J^ pipe diameters if the taps are

in the standard positions.

When the diameter ratio is very small, the kinetic energy of the

jet is all dissipated, there is no restoration of pressure, and it is

appropriate to regard the orifice as a device for forcibly accelerating

the fluid. But when the diameter ratio is large and there is a

considerable restoration of pressure, the differential between the

pipe taps represents dissipative or frictional resistance and not

kinetic resistance to acceleration, except in the sense that if there

had been no acceleration anywhere there would have been no increase
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of kinetic energy to be dissipated. Hence, it is more natural and

in closer accordance with the physical facts to regard an orifice

plate of large diameter ratio merely as a ridge projecting inward

from the wall of the pipe and introduced for the sake of increasing

the resistance of the pipe to flow along it.

There is thus a gradual change of the nature of the phenomena
which occur between the orifice and a point eight pipe diameters

downstream, as (3 increases. The discharge coefficient is not suscep-

tible of the same simple interpretation for pipe as for throat or

flange taps, and a more complicated and quite different form of

equation is required to represent the manner in which it depends

upon the diameter ratio and pressure ratio.

XXI. SPECIMENS OF THE EXPERIMENTAL RESULTS

Several matters which deserve mention may best be elucidated by
comparing the values of ft obtained from the observations on par-

ticular orifices with the values given by the empirical equation.

For this purpose, data for four of the orifices and for throat taps

are presented in Tables 19 to 22, which are all arranged in the same
way.

The values of ft determined by the observations are listed in

column 4, in the order of increasing values of x as shown in column 3.

For each orifice a curve

ft =f(x) (/3 constant) (45)

was drawn to represent equation (30) with the given /3; and for each

of the observed values of x in column 3 the value of ft was read off.

This value, denoted by ft (calc), was then subtracted from the

observed value ft (obs.), and the difference

ft(obs.)-ft(calc.) = 5 (46)

listed in column 5, is the amount by which each observed point is

above the curve, or the excess of the observed over the computed
value of ft. The combined errors of drawing the curve and reading

from it may sometimes have amounted to ±5 in the last figure

given, but the values of 8 are quite accurate enough for our present

purpose.

Each table is divided into two parts, of which the first contains

the values of ft (obs.) and 5 for z<0.02 and the second all the re-

maining values. The mean values of 5 for the two parts are shown
separately, and the general mean is given at the foot of column 5.
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Table 19.

—

Plate No. 1-6 (Foxboro Company)

[Z>=5.785 ins.; d= 0.6265 ins.; 0=0.1083; throat taps]

[Vol. 2

Flow nozzle used

Initial

pressure

V\
lbs./in.»

pi—Pi
Pi
=x

ft
(obs.)

Ci (obs.)
- Ci(calc)

= 5

5-0.0018 5-0.0009

1 2 3 4 5 6 7

D-l 207.9
86.7

139.1
225.6
16.1
89.3
18.4
20.7
24.2
39.6
64.7

0. 0151
.0180

.0522

.0594

.0864

.1062

.1718

.2877

.3842

(. 6100)

(. 7340)

0. 5814
.6185

.5764

.5826

.5963

.5958

.5806

.5586
. 5312

(. 4862)

(. 4638)

-0. 0140
+. 0234

-0. 0158
+. 0216D-l

+.0047 ±. 0187

D-l -.0144
-.0073
+. 0100
+. 0122
+. 0066
+. 0041
-.0046
(+. 0022)

(-h 0153)

-. 0162
-.0091
+. 0082
+. 0104
+.0048
+.0023
-.0064

-0. 0153
A-2-. -.0082
D-l +. 0091
D-l +. 0113
D-l +. 0057
D-l +.0032
A-2 . -. 0055
A-2 .

A-2-.

+. 0009
+. 0018

±.0095
±.0098

±.0083

We may first examine Table 19, which refers to the smallest of all

the orifices tested. The observations are spread over a very wide

range of x, but we shall ignore the last two values of Cx because the

values of x at which they were obtained are outside the range for

which the empirical equation was developed and over which we
regard it as safely applicable.

The general mean at the foot of column 5 shows that, on the

average, the values of Ci found for this orifice were higher than the

computed values by about 0.0018 or 0.3 per cent.

Column 6 gives the departures of the individual values of 5 from

their general mean. The mean of these departures, taken without

regard to sign, is ±0.0098, and this figure may be regarded as a

rough measure of the internal inconsistencies of the series.

Column 7 contains the corresponding values for #>0.02.
Judged by the criterion of internal consistency, this series is one of

our worst, and if there had been none better our results would not

have been worth much.
Table 20 contains similar, but more numerous, data for an orifice

of diameter ratio = 0.2778. The last value of Ci is disregarded for

reasons stated above. The general mean at the foot of column 5

shows that, on the average, the values of Cx for this orifice were

lower than the values from equation (30) by about 0.0024 or 0.5

per cent.

The mean departure from the general mean is ±0.0041 (foot of

Bolumn 8), so that this series is much more consistent with itself

than the series in Table 19.
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Table 20.

—

Plate No. 5-8 (Bureau of Standards)

[.0=7.634 ins.; d=2.121 ins.; /3=0.2778; throat taps]

Flow nozzle used

Initial

pressure

V\
lb./in.2

Pl—Pi
Pi

—X
(obs.)

Ci(obs.)
- Ci (calc.)

= 5

5+0.0024 5+0.0027

1 2 3 4 5 6 7

B-2 222.7
112.0
89.2
49.1

128.4
50.9
15.0

142.3

90.9
48.9
16.0
16.6

47.8
18.5
20.6
48.0

21.6
23.5
26.8
37.3

0. 0057
.0059
.0088
.0093

.0106

.0113

.0117

.0150

.0624

.0757

.0771

.1136

.1722

.1977

.2664

.2742

.3208

.3732

.4438

(. 5510)

0. 5947
.5936
.5896
.5889

.5961

.6002

.6034

.5920

.5845

.5810

.5926

.5833

.5642

.5673

.5601

.5455

.5482

.5386

.5240
(. 4923)

-0. 0026
-. 0037
-. 0074
-.0080

-. 0006
+.0036
+. 0068
-. 0042

-0. 0002
-. 0013
-.0050
-. 0056

+. 0018
+.0060
+.0092
-.0018

A-2 __

A-2
A-2

B-2 ..

A-2. ...

D-l
B-2

-. 0020 =fc. 0039

C-2 -. 0055
-. 0073
+. 0046
+.0003

-.0098
-.0026
+. 0018
-.0114

-.0002
+. 0002
+.0007
(-.0061)

-. 0031
-.0049
+.0070
+.0027

-. 0074
-. 0002
+. 0042
-. 0090

+. 0022
+. 0026
+. 0031

-0. 0028
C-2 -.0046
A-2 +. 0073
A-2 +. 0030

C-2 -. 0071
A-2
A-2

+. 0001
+. 0045

C-2 -.0087

B-2 +. 0025
B-2 +. 0029
B-2 +. 0034
B-2...

-. 0027
-. 0024

±. 0042
±. 0041

±.0043

Table 21.

—

Plate No. 5-6 (Bureau of Standards)

[£>= 5.785 ins.; d=1.997ins.; 0=0.3452; throat taps]

Flow nozzle used

Initial

pressure

Pi
lbs./in.2

P1-P2
Pi

=X
C'i (obs.)

Ci (obs.)
- Ci (calc.)

= 5

5-0.0009

1 2 3 4 5 6

A-2... 213.8
209.5
15.0
49.9

213.9
219.5
15.0
88.9

132.1
16.6
49.2
17.4
84.2

19.8
45.6
21.3
23.6
87.5

28.3
30.1
32.7
34.9
49.3

50.0
49.5
27.3
47.2
30.4

0. 0016
.0026
.0036
.0043

.0073

.0074

.0090

.0108

.0225

.0250

.0251

.0298

.0401

.0484

.0641

.0665

.0780

.0871

.0923

.0961

.1015

.1051

.1158

.1316

.1752

.2382

.2428

.2578

0. 5864
.5985
.6159
.6008

.5892

.5952

.6062

.5978

(. 6326)
.5968
.5947
.5968
.5940

.5888

.5920

.5917

.5903

.5872

.5855

.5853

.5867

.5874

.5859

.5831

.5744

.5642

.5647

.5608

-0. 0117
-. 0021

+. 0181
+.0032

-.0082
-.0022
+. 0091
+. 0008

-0. 0126
A-2 -. 0030
D-l__. +. 0172
D-l__._ +.0023

B-2 —.0091
B-2 -. 0031
D-l... +. 0082
A-2 , —.0001

+. 0009 ±.0069

B-2- (+. 0371)

+.0015
-. 0006
+.0022
+.0006

-. 0035
+. 0017
+.0018
+.0019
+.0006

-. 0009
-.0006
+. 0016
+. 0022
+. 0018

+.0024
+. 0002
+. 0007
+. 0020
+. 0007

D-l +.0006
A-2 -. 0015
D-l +.0013
C-l -.0003

D-l —.0044
A-2 +.0008
A-2 +.0009
A-2 . +.0010
C-l — . 0003

A-2 -.0018
A-2 —.0015
A-2 +.0007
A-2 +.0013
C-2 +.0009

B-2 +.0018
C-2 -.0007
B-2. —.0002
C-2 +. 0011
B-2. —.0002

General means
+.0009
+. 0009

±.0011
±.0028
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Table 21 contains the data for an orifice of diameter ratio /3 = 0.3452.

One of the values of d is far out of line with the others and gives a

very large 5. We regard this large departure from the mean

( + 0.0371) as representing a mistake rather than an error, and we
omit it from the average. In a few other similar cases we have

likewise had no scruples in ignoring isolated points which departed

from the general run by several times the average departure of the

rest of the points.

The general mean at the foot of column 5 shows that the values of

C\ for this orifice averaged about 0.0009, or something less than 0.2

per cent, higher than the computed values. The mean departure

from the mean 5 is ±0.0028 (foot of column 6). This series is one

of the very best.

Table 22.

—

Plate No. 11-6 (Foxboro Company)

[Z>=5.785 ins.; d= 3.500 ins.; 0=0.6050; throat taps]

Flow nozzle used

Initial

pressure

Pi
lbs./inJ

Pl—P2

Pi
=X

Cx
(obs.)

Cx (obs.)
- Cx (calc.)

= 5

5-0.0026 5-0.0013

1 2 3 4 5 6 7

A-2 49.4
88.6
15.1
48.8

17.4
18.3
19.5

0. 0015
.0061
.0090
.0196

.0810

.1110

.1262

0. 6148
.6088
.6135
.6075

.5980

.5925

.5926

+0. 0059
+.0005
+. 0066
+. 0010

+0. 0033
-.0021
+.0040
-.0016

C-1-.
A-2- .

e-i„.

+.0035 ±.0027

B-2-- +.0007
+. 0002
+.0030

-.0019
-.0024
+.0004

-0.0006
C-2 -.0011
C-2 +.0017

+.0013
+.0026

±.0016
±.0022

±.0011

Table 22 contains the data for an orifice of diameter ratio /3 = 0.605.

The observations cover only a short range of x because it was impos-

sible to reach high differentials with so large an orifice. They are

so few in number that averages have little significance, but, judged

by the criterion already employed, this is one of the good series.

The values of Ci are, on the whole, about 0.0026, or 0.5 per cent,

higher than the computed values.

XXII. COMMENTS ON THE DATA IN TABLES 19 TO 22

For convenience of comparison, some of the mean values from

Tables 19 to 22 are brought together in Table 23, which may now be

examined.
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Table 23.

—

Summary of values from Tables 19 to

609

Serial number of plate
Diameter ratio, &
Number of points for z<0.02.
Number of points for x>0.02_

Mean 5 for all points
Mean 6forz<9.02
Line 6-line 5
Mean 5forz>0.02

Line 8-line 5

Mean scattering for all points
Mean scattering for z<6.02_ _

Mean scattering for z>0.02_ -

Table—

1-6

0. 1083
2
7

+.0018
+. 0047
+.0029
+.0009

-. 0009
±. 0098
±. 0187
±. 0095

5-8

0. 2778
8

11

-.0024
-.0020
+.0004
-. 0027

-.0003
±.0041
±. 0039
±.0042

5-6

0. 3452
8
19

+.0009
+.0009
.0000

+.0009

.0000
±.0028
±.0069
±.0011

22

11-6

0.6050
4
3

+.0026
+.0035
+.0009
+.0013

-.0013
±.0022
±.0027
±. 0016

1. MEAN VALUES OF 5

For each orifice let the curve ft —J(x) be constructed from equation

(30) with the appropriate value of /3. Let this curve be raised by the

amount shown in line 5 of Table 23, and let the new curve be called

"the adjusted curve" for the orifice in question. If points represent-

ing the observed values of ft are also plotted, they will obviously be,

on the average, as much above as below the adjusted curve.

Line 7 shows the average amount by which the observed points

are above the adjusted curve for those experiments in which x<
0.02; that is, in which the downstream static pressure was more than

98 per cent of the upstream pressure. For plate No. 5-6, the best of

the series here presented, the mean point forx< 0.02 lies on the adjusted

curve, while for the other three plates it lies higher; but this does not

indicate a general rule. For when all the orifices are taken into account

the differences corresponding to those in line 7 come out negative

about as often as positive, and the mean point for x< 0.02 is some-

times above and sometimes below the adjusted curve, with no marked

preponderance of either direction.

For cc>0.02 the mean departure of the observed points from the

adjusted curve is, of course, of the opposite sign to that for x<0.02,

as is illustrated by a comparison of lines 9 and 7.

2. SCATTERING OF OBSERVED POINTS

The average distance of a series of points from the adjusted curve,

taken without regard to sign, may be called their "mean scattering."

As remarked in section 21, this quantity, shown in line 10, may be

taken as a rough measure of the "badness" of the series.

If, as before, we treat the two groups of points separately (lines 11

and 12), we find that in three of the four cases the mean scattering

14830°—29 4
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was much greater for #<0.02 than for x > 0.02, though in the fourth

case the two were sensibly equal. This does illustrate a rule to which

there were few exceptions. In nearly all series which included several

points near x = —that is, near r = 1—these points were much more
scattered than points farther out.

XXIII. DISCUSSION OF THE ACCIDENTAL ERRORS

The greater scattering of the values of d obtained from experi-

ments at low values of x might naturally, at first sight, be attributed

to the greater percentage errors in reading low differentials; but this

explanation is fallacious, for, in the first place, the absolute static

pressures varied in the ratio of 15 to 1 and a low value of x did not

always mean a low absolute value of the differential.

But there is a more striking piece of evidence. Each reading of

the differential between the throat taps was accompanied by readings

between the flange and between the pipe taps, all within a short

space of time and as nearly as possible under the same working con-

ditions. The accidental errors of the three readings can not have

been systematically related, but the three values of d varied together,

a high value of d for throat taps being accompanied by high values

for the other two combinations, and vice versa.

This parallelism was, of course, not perfect, because the accidental

errors of reading the differential gauge were not entirely inappreci-

able. But for the orifices of the lower diameter ratios the resulting

accidental errors in d were of the order of only 0.1 or 0.2 per cent;

and the agreement of the three sets of values of d, as regards their

variations from one experiment to another, proved conclusively that

these simultaneous variations were not due to errors of the readings

at the orifice but to some other cause which affected all three values

of d in the same way.

Three possible explanations suggest themselves—the discharge

coefficient may depend on the absolute static pressure, to which no
attention has hitherto been given; or the discharge coefficients of the

flow nozzles may have been incorrectly determined; or the obser-

vations at the flow nozzle may have been affected by large errors.

(a) If the discharge coefficient of an orifice depended on the abso-

lute static pressure at which the experiment was made, this influence

would be revealed by intercomparing all the values of Ci obtained

with the same flow nozzle, and the value of 8 would vary systemati-

cally with the initial pressure pi.

Particular series may be picked out where this appears to be the

case, especially at low values of x; but in general the hypothesis is

not substantiated, and the whole mass of observations indicates that

within the range of static pressures covered in these experiments the

discharge coefficient of an orifice depends only on the ratio of the two
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pressures and is sensibly independent of their absolute values. It

would, indeed, be very surprising if any effect of the absolute pressure

were observed with a gas so nearly ideal as air.

(6) Each of the orifices referred to in Tables 19 to 22 was tested

with two or more flow nozzles, and the same was true of nearly all the

orifices. If the discharge coefficients of the nozzles had been incor-

rectly determined relatively to one another, the values of 5 would have

varied with changes from one nozzle to another, some nozzles giving

systematically high values of Ci and others systematically low values.

Series of values of d for particular orifices may be found which

seem to show evidence of this, but here, again, the idea is not con-

firmed by the aggregate of all the experiments and there is, on the

whole, no evidence of errors in the discharge coefficients of the flow

nozzles which are at all comparable in magnitude with those required

to account for the actual variations in 5.

(c) Of the observations made at the flow nozzle, the only one subject

to errors of any importance is the reading of the differential by means

of the central impact tube; but this was read each time one of the

differentials at the orifice upstream was read, and there can have

been no systematic connection between the errors of reading the dif-

ferential gauges at the oiifice and at the nozzle. Furthermore, there

is no reason to suppose that the errors at the nozzle were of a different

order of magnitude from those at the orifice, which have already been

shown to be relatively small. It therefore appears that this third

explanation of the large accidental errors in Cx can not be accepted

as adequate.

(d) The true cause seems to have been the lack of complete steadi-

ness in the rate of flow, due to the impossibility of holding the speed

of the compressors perfectly constant or, ultimately, to variations of

voltage in the power supply to the motors. There was a large capac-

ity between even the 8-inch orifice station and the flow nozzle, and

when the air supply varied there must evidently have been a time

lag between the orifices and the nozzle, so that observations made
simultaneously at both places did not, in reality, correspond to pre-

cisely equal rates of flow.

Any such time lag would be greater the lower the rate of discharge,

and its effects on the value of d computed by assuming the flow to

be perfectly uniform all along the line would therefore be more likely

to be large at low than at high rates of flow. With any one orifice,

low rates of flow occur at low values of x. Hence, the effects of vari-

ations of compressor speed in producing variations of 5 should, on

the whole, be more pronounced at low values of x, and, in general,

this is just what happened, as was remarked in section 22.

Furthermore, at any given pressure ratio, the absolute rate of

flow is lower for small than for large orifices. Hence, if the errors
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now in question are really due to the time lag, they will be most

marked for the smaller orifices, and this, also, is what was actually

found, as is illustrated by Tables 19 to 22, or by the summary in

lines 10, 11, and 12 of Table 23.

For any given diameter ratio the orifices are smallest for the

4-inch plates and, other things being equal, the scattering might be

expected to be, on the whole, greatest for the 4-inch plates which

were, moreover, farthest upstream and separated from the flow

nozzle by a somewhat greater capacity than the others. This expec-

tation is also confirmed by an examination of the whole collection

of values of ft.

The voltage, compressor speed, and air supply were, of course,

more unsteady at some times than at others, and the statements

above are true only on the whole and not in every individual case.

But it seems fair to conclude that the greater part of the unexpectedly

large accidental errors of the experiments was due to the lack of a

perfectly steady power supply, and that even if all our measurements

had been absolutely accurate, unavoidable errors would still have

been present in the results. The only mitigation of the effects of

these accidental errors lies in the multiplication of experiments, by
which they are, to a considerable extent, averaged out.

It seems useless to attempt any further quantitative discussion of

the accuracy of our results, and the reader must be left to form his

own estimate from the specimens given in Tables 19 to 22 and from

the remarks which have been presented in this and the two preceding

sections.

XXIV. THE EFFECTS OF VISCOSITY

Within the range of working conditions covered by our experi-

ments, the discharge coefficients of square-edged orifices are not

appreciably affected by changes in the viscosity of the fluid. The
experiments were therefore not adapted to investigating such effects

and did not add anything to the experimental information concerning

them which has already been published by Hodgson and Daugherty. 12

Nevertheless, the subject is of such importance that it will be discussed

briefly here, rather than relegated entirely to an appendix, as would
otherwise be more appropriate. It will be treated somewhat further

in Appendix C.

Let us suppose that a liquid of low viscosity, such as water, is

flowing through an orifice, and that the discharge coefficient is de-

termined from measurements of the differential and rate of discharge.

Let the liquid then be replaced, successively, by others of greater

and greater viscosity, and in each case let the discharge coefficient

12 J. L. Hodgson, The Orifice as a Basis of Flow Measurement; Inst. Civ. Eng., Selected Engineering
Papers, No. 31; 1925. R. L. Daugherty; Bulletin No. 130, Goulds Pumps (Inc.), Seneca Falls, N. Y.; 1926.
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of the orifice be determined at the same volume rate of flow as in

the first experiment. Sooner or later the discbarge coefficient will

begin to increase with the viscosity, the point where this increase

first becomes evident depending on the precision of the experiments.

The first effect of increased viscosity is to retard 'the motion of

the liquid over the upstream face of the plate toward the orifice

and around the edge. The surface film creeps around the corner

more slowly, and the centrifugal force urging it toward the axis of

the jet is diminished. Hence, there is less tendency to contraction, the

cross section of the vena contracta becomes larger, and the discharge

coefficient increases.

But this action can, at most, go only so far as entirely to eliminate

contraction; and meanwhile, as the viscosity increases, its retarding

effect reaches farther and farther from the edge of the orifice into

the jet, so that a higher and higher differential is needed to main-

tain the given rate of discharge. If the viscosity were .increased in-

definitely, the differential would evidently also have to be raised

indefinitely, and the discharge coefficient would fall toward zero.

The combined result of these two opposing tendencies is that, as

the viscosity is progressively increased from low values while the

rate of discharge is held constant, the discharge coefficient of the

orifice first increases, then passes through a maximum, and there-

after decreases.

The foregoing is an elementary physical interpretation of the

observed facts as described by Hodgson and Daugherty in the papers

referred to above.

In the absence of viscosity, the only forces called into play in the

formation of a jet would be the inertia reactions of the liquid against

acceleration, which are proportional to the density ; but since no real

liquid is entirely free from viscosity, viscous forces are also necessarily

developed. The degree to which they modify the motion of the liquid

evidently depends, not on their absolute magnitude, which is propor-

tional to the viscosity, but on their relative magnitude in comparison

with the inertia forces. Hence, in the present connection, the impor-

tant characteristic property of the liquid is not simply its viscosity fi

but the ratio of viscosity to density or

£*» (47)
P

which is known as the "kinematic viscosity."

With a given orifice and a given liquid, the viscous resistances

increase with the speed of flow, but the kinetic energy and the accom-

panying inertia reactions increase with the square of the speed.

Hence, the influence of viscosity is greater at low than at high speeds,

and lowering the rate of discharge has qualitatively the same effect

on the discharge coefficient as increasing the kinematic viscosity.
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Let us suppose, finally, that without altering either the liquid

or the mean linear speed of the jet, experiments are made upon smaller

and smaller orifices which are, together with\the adjacent parts of

the pipe, all geometrically similar to one another or of the same
"shape," in the general sense of the term. Eeducing the linear

dimensions of the apparatus without reducing the linear speed of

flow through it increases the transverse gradients of speed, to which

the viscous forces are proportional, and the influence of viscosity is

therefore greater on small than on large orifices; or reducing the size

of the orifice has qualitatively the same effect as increasing the kine-

matic viscosity of the liquid.

The foregoing conclusions are all consistent with the proposition

that for orifices of any one shape the discharge coefficient is determined

by the value of the single quantity

S=^=^ (48)

in which S is the mean linear speed through the orifice, computed from

the known diameter d and the observed volume rate of discharge, and

R is known as the " Reynolds number."

The proof of this proposition may be *deferred to Appendix C, but

an important inference may be drawn at once; namely, that for all

orifices of any one shape there is a general relation

G=f{R) (49)

which holds for all liquids, all sizes, and all rates of discharge. Accord-

ing to the reasoning advanced above concerning the effects of varying

£• v, S, and d separately,

the cuive representing

equation (49) should

>^<. be qualitatively of the

/ ^^^^ form illustrated in

i Figure 9, and the ex-

i
periments of both

j
Hodgson and Daugh-—

,

.'•"
'-

'
•*! ; " '*•". '

:

"

'
' K erty have, in fact,

" x
o given curves of this

Fig. 9.

—

Variation of discharge coefficient with Rey- form. They show that
nolds number

for all large values of

R the discharge coefficient of an "orifice has the same sensibly con-

stant value C , and that it is not measurably affected by variations

of the kinematic viscosity or the rate of discharge unless these are

such as to reduce R below some limiting value R .

The foregoing statements have referred specifically only to liquids,

but they are equally applicable to gases when the percentage different-

Co
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tial is small, so that the density is nearly constant; and in Hodgson's

experiments the points obtained for air and for various mixtures of

water and glycerine all lay indiscriminately along the same smooth

curve of the form represented in Figure 9.

The precise form of the curve and the values of C and R depend

on the " shape" of the orifice; this term being understood in the most
general sense as referring not only to diameter ratio, sharpness of edge,

and relative positions of the pressure taps, but to any and all other

geometrical peculiarities of the orifice itself or of the channel in which

it is installed, which influence the nature of the fluid motion between
the two cross sections where the taps are situated. Our present inter-

est is not, however, in the whole curve but only in the horizontal por-

tion of it. It is safer to avoid the effects of viscosity than to attempt

to make allowance for them, and what is needed is a simple criterion

which will show, in any particular case which may occur in practice,

whether the effects of viscosity on the discharge coefficient will be

negligible or, if not, how the working conditions may be modified to

make them so.

The meaning to be assigned to the term "negligible" obviously

depends on the precision of the experiments, so that the value of

R is somewhat indefinite at best. Furthermore, the information

hitherto published, though drawn from a large number of laborious

and painstaking observations, is meager and somewhat conflicting,

so that only very rough estimates of the value of R are possible.

Nevertheless, such data as are available indicate that for ah* at

ordinary temperatures and for orifice diameter ratios between 0.2

and 0.6 the Reynolds number R will be high enough to make the

effects of viscosity negligible in all commercial measurements when-

ever the relation

<Z
2^>10 (50)

is satisfied, d being the diameter of the orifice in inches, p the absolute

static pressure in pounds per square inch, and h the differential in

inches of water.

Since the process of arriving at the numerical value in (50) involves

the use of the density and viscosity of air, the estimate would be

different for another gas and, moreover, the value is not independent

of the diameter ratio of the orifice. But in the present state of our

knowledge it seems useless to attempt further refinements, and we
can do no better than to regard the inequality (50) as probably a

safe criterion in the commercial metering of natural or other gases

which are not widely different from air as regards specific gravity

and viscosity.

The condition expressed by (50) is evidently amply satisfied in the

great majority of commercial measurements of gas by orifice meters,
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for with an orifice of as small diameter as 0.8 inch and an absolute

pressure as low as 15 lbs. /in.
2 the differential

A =0^xl5
= linch

will still be high enough. But in the employment of smaller orifices

for the measurement of very low rates of discharge the condition

might be violated; and until the subject has been further investigated

it seems well to accept (50) as a warning to adopt some other method
of metering in these cases, unless the orifice can be standardized

under the same working conditions as are to prevail when it is used

as a meter.

XXV. GEOMETRICAL SIMILARITY AND THE INFLUENCE OF
PIPE DIAMETER

The values of ft obtained for the 4-inch plates were, on the average,

about 1.5 per cent higher than those found for 6 and 8 inch plates

of the same diameter ratio, and this result agrees, qualitatively, with

the experience of other experimenters.

Other things being equal, reducing the diameter of the orifice

lowers the Reynolds number and will ultimately increase the discharge

coefficient, as explained in section 24, and some of the high values

obtained with small apparatus have doubtless been due to the dis-

turbing action of viscosity. But many experiments, including our

own, have shown a dependence of discharge coefficient on pipe diam-

eter, even when the Reynolds number was much too high to admit
of this explanation of the observations.

On the other hand, the theory of dimensions 18 predicts that so

long as the effects of viscosity are negligible a mere change of scale

will not alter the discharge coefficient, and the validity of the theory

has been confirmed experimentally in so many applications to hydro
and aerodynamics that deductions from it are no longer open to

any reasonable doubt.

The obvious and necessary conclusion is that when, for example,

an 8-inch and a 4-inch plate of the same diameter ratio and with simi-

larly situated pressure taps are found to have different discharge

coefficients, the change of size has not altered the linear dimensions

of all the essential features of the apparatus in the same ratio, but
has been accompanied by more or less change of "shape," in the

general sense of the term. The two installations are not quite geo-

metrically similar, and the difference of discharge coefficients is caused

by this departure from similarity and not directly by the change of

absolute size.

13 See Appendix C.
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It is easy to see how this might come about. The most obvious

elements of shape are diameter ratio, sharpness of edge, and relative

location of pressure taps. To secure an adequate degree of similarity

as regards diameter ratio and positions of the taps is a simple matter,

because small changes in these elements of shape have very little

effect on the discharge coefficient unless the diameter ratio is large.

Similarity of edge is much more difficult to attain, as is shown by the

considerable differences of behavior exhibited even by carefully

made orifices of the same size, installed in identically the same way.

But these three are not the only important elements of shape. For
example, it is well known that the introduction of elbows or other

pipe fittings, upstream from the orifice, may change the discharge

coefficient by several per cent unless the intervening length of straight

pipe is sufficient to allow the disturbances produced at the fittings

to die out, or unless they are suppressed by means of honeycombs or

straightening vanes.

In order that two orifices of different size may be of the same
"shape," in the general sense required for the application of dimen-

sional reasoning, all geometrical features of the channel which influence

the nature of the fluid motion between the two cross sections where

the pressure taps are situated must be reproduced to scale when the

size is altered ; and in many experimental investigations this condition

has not been satisfied.

One point, which becomes of increasing importance as smaller and

smaller pipes are employed, is internal roughness. Experiments by
Stanton M on pipes which were artificially roughened by internal

screw threads showed that the roughening caused a considerable

modification of the distribution of velocity over the cross section, the

speed being diminished near the wall and increased near the axis, for

any given average speed. Such an alteration in the distribution of

velocity in the stream approaching an orifiee would evidently diminish

the contraction of the jet and raise the discharge coefficient of the

orifice.

But with pipes of any given quality and in equally good condition,

the smaller sizes are extremely likely to be relatively, though not

absolutely, rougher than the larger ones, so that substituting a small

for a large pipe has the same effect on the "shape" of the apparatus as

making the large pipe absolutely rougher. It is therefore to be

expected that, as a general rule, when ordinary commercial steel

pipe is used, the discharge coefficients of orifices of any given diameter

ratio will turn out to be highest for the smallest pipes. This is usually

found to be the case; but the effect is not due to the change of abso-

lute diameter, except insofar as this is unavoidably accompanied by
a change of relative roughness.

m T. E. Stanton, Proc. Roy. Soc, A85, p. 366; 1911.
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In our own experiments each orifice station was preceded by an

uninterrupted run of uniform straight pipe at least 120 diameters

long, which appears sufficient to eliminate the effects of disturbances

produced still farther upstream. But the departure from geometrical

similarity which consisted in the greater relative roughness of the

4-inch pipe remained, and it seems probable that the higher discharge

coefficients found for the 4-inch plates were due to this.

Other departures from geometrical similarity may also produce an

illusory impression that the discharge coefficient of an orifice depends

directly on its absolute diameter. For example, in the investigation

by Spitzglass 15
, orifices were tested in seven sizes of pipe, from 2 to

12 inches in diameter, and the results showed a systematic increase

of the discharge coefficient for any given diameter ratio as the diam-

eter of the pipe was decreased; but the run of straight pipe ahead of

the orifice was the same for all sizes—namely, 12 feet—instead of

some fixed number of pipe diameters. Hence, the condition of geo-

metrical similarity was vary far from satisfied, and no information

was obtained regarding the effect of changing the absolute size by
itself, but only when accompanied by a simultaneous progressive

change in the shape of essential parts of the apparatus. There is no

reason to doubt the correctness of the conclusions drawn concerning

the effect of changing the pipe diameter in this particular form of

installation. But the quantitative result can not be accepted as of

general applicability, for it would quite possibly have been different

if the entrance length had been 6 or 30 feet instead of 12.

From the published accounts of other investigations in which
orifices have been tested in pipes of various sizes, it is often impos-

sible to form any opinion of the degree of geometrical similarity

between large and small installations, or of the nature of the depar-

tures from similarity, so that it would be useless to attempt any

physical interpretation of the results obtained. As a general rule,

such experiments have shown higher discharge coefficients for small

than for large pipes, as happened in our own work. This is probably

usually due, at least in part, to roughness, as explained above; but

it may also be due to the manner of preparing the orifice^. For any
slight rounding off of the entrance corner—for instance, by a light

finishing touch with fine emery cloth—raises the discharge co-

efficient, and any given degree of absolute rounding affects a small

orifice more than a large one.

The only general conclusions that can safely be drawn are as follows

:

(a) So long as the Reynolds number is large enough that viscosity

may be ignored, there is no reason to suppose that a uniform change
of scale of all the essential parts of the apparatus influences the

discharge coefficient at all.

« J. M. Spitzglass, Trans. Am. Soc. Mech. Eng., 44, p. 919; 1922.
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(b) Changes of pipe diameter are, in practice, nearly always accom-

panied by changes of shape which are such as to make the discharge

coefficient of an orifice of given diameter ratio higher in small than in

large pipes.

(c) The magnitude of this change with pipe diameter depends on

the particular form of apparatus used, and the results of one experi-

menter may differ from those of another by more than the errors of

experiment, because the two observers are not measuring the same

thing.

(d) So far as we know, there are no published data on the varia-

tion of discharge coefficient with pipe diameter which can be accepted

as generally valid.

XXVI. EQUATIONS FOR USE IN ORIFICE METER
COMPUTATIONS

Equations (20) of Section X, in conjunction with (26) of Section XI,

make it possible to compute the rate of flow of air through an orifice

of known discharge coefficient from observations of the temperature,

static pressure, humidity, and differential. They are suited to the

purpose of defining discharge coefficients for which they were devel-

oped, but in practical computation various other forms of equation

are more convenient under various circumstances. It would be

impossible to give a complete list of such forms, but the sort of trans-

formation required may be illustrated.

(a) It is usually desired that the rate of discharge be expressed

in terms of volume, measured at some standard density or under

some standard conditions.

Let ps [lb./ft.
3
]
= the standard density adopted

and
F[ft. 3/min.]==the rate of discharge measured at p8 .

Then the rate in lb. /sec. is

and (20,60 assumes the form

7=^^(7^2VM (52)
Ps

in which d is in ins.; A in lb./ in.
2

; and p x in lb. /ft.
3

(b) The differential is usually measured by a liquid manometer,

and it is then convenient to have the equation in such form that the

manometer reading may be substituted directly, without being

first reduced to lb. /in.
2

Let
a = the specific gravity of the liquid at its actual temperature,

referred to water at 60° F.

;

ft [ins.] = the differential as read.
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With standard gravity

1 lb./in.
2 = 27.706 inches of water at 60° F. (53)

so that

A[lb./in.>] =
2
-^ (54)

and the factor VA in (52) is to be replaced by

V27^ = 0.1900VcrA (55)

The resulting equation is

7^ 5 -985^^/VM (56)
Ps

(c) The density p x must be computed from the pressure, tempera-

ture, and humidity, and it is convenient to embody the computation

in the equation, rather than perform it separately and then substitute.

For this purpose equation (26) Section XI may be utilized. In

all ordinary commercial metering air may be regarded as following

Boyle's law; hence, the correction factor Y may be omitted and the

equation simplified to the form

2.6914^(1-0.38^)
p
^

458 + *
(57)

in which w= ir/p is the " vapor fraction"; that is, the partial pressure

of the water vapor in the air, expressed as a fraction of the total

pressure.

If the value of p x given by (57) is substituted in (56), the result

may be written

7-JW^gjS (68)

where

^MIQVi
(59)

Ps

If the standard density is not stated directly but specified by
standard conditions, let

pa [lbs. /in.
2
]
= the standard pressure;

ta [°F.] = the standard temperature;

and
w 8= the standard vapor fraction.

Then by (57)

2.6914ffa (l-0.38Q
Ps
=

4-58+7; (60)

and (59) takes the alternative form

N-W*&m±k (6D
#8 (l-0.38w s)

v
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The value of the factor N is fixed by the standard density or the

I standard conditions and the specific gravity <r of the manometer

j

liquid. It is independent of the working conditions at the orifice,

I

and is constant except for small variations in ^a which may be caused

I by variations of the temperature of the manometer liquid. If this

I remains between 32° and 100° F., the greatest possible variation

i of N from its mean value is about one-fourth per cent for water and

j

much less for mercury. Such errors are negligible in commercial

j

metering and N may be regarded as sensibly constant. If it is

desired to allow for even small variations, the most natural pro-

cedure is to use a constant value of N, computed for some fixed

temperature of the manometer, and reduce the observed values of

li to this temperature before substituting in (58).

(d) The operations by which (20, c) was transformed into (58)

might equally well have been carried out on (20, a, o, d). The
results can be obtained from (58) by substituting 0"

2 , J?2 for C\,

pt, or by utilizing the equations

C1
= G'dj^jp; C2

= C'^T-j? (62)

The value of N is the same in all four cases and is to be found from

(59) or (61).

XXVII. NUMERICAL EXAMPLES

To illustrate the computation of N, let the standard conditions

adopted for fixing the standard density be 60°F., 14.65 lb. /in.
2

, and

50 per cent saturation; and let the manometer liquid be carbon

tetrachloride of specific gravity o-=1.58.

As a preliminary to substitution in (61) it is necessary to find the

value of WB . The pressure of saturated water vapor at 60° F. is

found from the steam tables to be 0.256 lb. /in.
2 Hence, for 50 per

cent saturation at 60° F. and 14.65 lbs. /in.
2 the value of the vapor

fraction is

F^2§f& = 000874 (63)

whence
1-0.38 Ws= 0.9967 (64)

Equation (61) now gives for N the value

3.648VE58(458 + 60) _
'

.N~ 14.65X0.9967
162 '7 (b5)

and this is to be substituted in (58) or in whichever of the four

equivalent equations may be best suited to the problem in hand.

Since the air must be somewhere between perfectly dry and com-

pletely saturated, equation (64) shows that, if the standard tempera-
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ture is 60° F., the value of N given by (65) can not be in error by

more than ±0.33 per cent, whatever be the standard vapor fraction.

If an uncertainty of this amount in V is regarded as negligible, it is

therefore unnecessary to specify any standard humidity and it is

sufficient to assume 50 per cent saturation. The uncertainty will be

less if a lower standard temperature is adopted, because the saturation

pressure of water vapor decreases with the temperature.

To illustrate further, the general equations may be applied to the

measurement of air by a particular orifice meter.

Let an orifice of diameter d = 2.50 ins. be installed in a long, straight

pipe of diameter Z> = 6.90 ins. and provided with flange taps, the

static pressure gauge being connected to the downstream tap.

To avoid useless repetition, it will be supposed that the differential

is read in inches of a liquid of specific gravity <r =1.58, and that the

standard conditions for measuring V are those specified above, so that

N has the value already computed and given by (65).

Under these circumstances the equation to be used for computing

the rate of discharge of air through the orifice is

7^102.7X2.yxg^ (

4

1

58

°

+f
w)

(66)

in which

F[ft. 3/min.] = the rate of discharge measured under the specified

standard conditions;

_p2 [lb./in.
2
]
= the absolute static pressure at the downstream

pressure tap;

li [ins.] = the differential as read on a manometer containing

a liquid of specific gravity cr=1.58, referred to

water at 60° F.;

£[°F.] = the temperature of the air entering the orifice;

w = its vapor fraction ; and
(7'

2 = the hydraulic discharge coefficient, based on the

downstream static pressure and with the ap-

proach factor included, for flange taps.

In applying (66) to the case of a particular measurement of flow,

the values of t and h are observed directly and that of p2 is obtained

by allowing for the outside barometric pressure in the usual manner.
The value of w will be discussed presently, but we may first specialize

further by assuming that the following values have been observed:

^ 2 = 25 lb./in.
2
; & = 45 ins.; # = 80° F. (67)

When substituted in (66), these values give

7=1470 (7'aVl -0.38w (68)

and the value of w is now to be considered.
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The value of w depends on the humidity of the air entering the

orifice, and this is seldom known, although a knowledge of the cir-

cumstances may show that the air must be nearly dry or nearly

saturated. But w is almost always so small that a very rough

estimate of its value is all that is needed, and it is sufficient to assume
that the air is one-half saturated.

In the present example the pressure of saturated water vapor at

80° F. is 0.505 lb. /in.
2

, so that on the assumption of 50 per cent

saturation the partial pressure of the water vapor is t = 0.2525.

The total pressure of the air entering the orifice is by (54).

Pi^+^Toe (69)

or

Vl = 25 +
1

2

5

7

8

7

X
Qf = 27.57 lb./in.

2
(70)

Hence

AOO 0.38X0.2525 A nnotr ;^c
0.38w=

27^57
= 0.0035 (71)

and

Vl-0.38w = 0.9982 (72)

Since the actual humidity of the air must be between and 100

per cent of saturation, this value can not be in error by more than

±0.18 per cent, and the uncertainty caused by failure to determine

the humidity is insignificant.

At higher temperatures or lower static pressures the uncertainty is

greater and in extreme cases it might be of some importance, but

it is evident that in the great majority of commercial measurements

the assumption of 50 per cent saturation is amply accurate, and that

in most cases the effect of humidity on the density may be entirely

ignored and the factor Vi — 0.38w omitted from the general equation

(58), of which (66) and (68) are special forms.

Retaining the value given by (72) reduces (68) to the form

7= 1467 ^a (73)

and it remains only to insert the value of (7'
2 .

This value must either have been determined by an experimental

standardization of the particular orifice, or it must be taken from

some standard table. If the edge of the orifice is of the same quality

as the average of the orifices used in our experiments, the value of

C2 may be found from Table 13, Section XVI. The diameter

ratio is

and the pressure ratio is (see equation (70))

'irfSr-0907 (75)
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whence by interpolation in the table we have C'2 = 0.623 and finally,

by (73).
*

7=914 ft.
3/min. (76)

It may be noted here that the limiting value given by the table

for r= 1.0 is (7'
2 = 0.605, which differs from 0.623 by nearly 3 per cent.

The change of discharge coefficient with the pressure ratio is therefore

by no means negligible in this example.

XXVIII. REMARKS ON METERING OTHER GASES

For other gases than air, the developments of Section XXVI remain

unchanged up to and including equation (56), but from that point on-

ward they must be modified as regards the computation of the den-

sity ^ and also of p8 , if this is merely specified by stating standard

conditions.

If the gas in question obeys Boyle's law as approximately as air

does, its specific gravity may be treated as a constant and the modi-

fications needed in the equations are simple and obvious. But if

the gas deviates far from Boyle's law as happens with some natural

gasses at high pressures, the computation of density is not so simple,

for it is to be remembered that pi in (56) represents the actual den-

sity of the fluid in the pipe ahead of the orifice, and this may differ

seriously from the density computed by means of Boyle's law from

the density at atmospheric pressure. But since the experiments

which gave occasion for this paper were concerned with air only, the

computations needed for gases that do not follow Boyle's law need

not be discussed further here.

As regards numerical values of the discharge coefficients of orifices,

it may be said that the limiting values for r= l will be the same for

all gases. 16 For lower values of r—that is, for higher percentage

differentials—it is probable that the discharge coefficient will be

found to vary slightly with the properties of the gas, especially with

its specific heat ratio. It does not, however, seem likely that these

variations will be of any importance so long as the pressure ratio is

not lower than r=-0.9. Further experimental data on this subject

are to be desired.

XXIX. SUMMARY OF CONCLUSIONS

Aside from the tables of discharge coefficients which have been

given in Sections XIV, XVI, and XVIII, and constitute the quan-

titative results of the investigation, the following points may be

noted

:

(a) The discharge coefficient of an oriffice for air does not depend

on or vary with the absolute static pressure.

w See, however, Section XXIV.
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(5) The hydraulic discharge coefficient based on either upstream or

downstream static pressure is not a constant but varies with the

ratio of the two pressures. At low static pressures and high differ-

entials these variations may be of serious importance and ignoring

them may lead to errors of several per cent in the computed rate of

flow. This difficulty may be avoided by using a discharge coefficient

based on the mean of the two static pressures.

(c) Very slight changes in the condition of the edge of an orifice

may have an appreciable effect on its discharge coefficient; and to

produce duplicate orifice plates which have the same discharge coeffi-

cient within ±0.5 per cent requires very careful mechanical work,
even when the diameter of the orifice is 1 inch or more. The com-
mercial plates loaned to us were quite as good, in this respect, as the

plates made at the Bureau of Standards.

(d) The difficulty of duplication increases as the size of the orifice

is reduced, and if a standard table of discharge coefficients is to be

relied upon, and the orifices not tested individually, it is advisable

to use the largest orifice practicable within the range of diameter

ratios covered by the available tables.

(e) The tables given in Sections XIV, XVI, and XVIII represent

average results obtained from well-made orifices installed in 6 and 8

inch pipes, with a straight run of at least 120 pipe diameters upstream

and 30 downstream. Similar orifices installed in a 4-inch pipe gave

higher coefficients; but the experiments were not adequate to the

establishment of a general relation between discharge coefficient and

pipe diameter, even for this particular mode of installation, and any

such relation must be expected to vary with the nature of the

installation.

Appendix A. THEORY OF THE FLOW NOZZLE AND THE
IMPACT TUBE

In finding the rate at which a gas is discharged through a flow

nozzle under observed conditions of pressure and temperature, the

first step is to compute the " theoretical " rate Mt which would occur

under certain ideally simplified conditions.

With well-made nozzles, suitably designed for the rates to be

measured, most of these conditions are nearly satisfied in practice,

and in these respects the simplified ideal state of flow through the

nozzle is a close approximation to reality. But one of the conditions

assumed in the theoretical work is that the speed of the jet is the

same near the wall of the nozzle as farther out toward the center

of the stream, and since skin friction and retardation at the wall

can not be done away with, this condition is not well satisfied in any

real jet.

14830°—29 5
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The result of the departure of the actual from the ideal conditions

is to make the true rate of discharge a little less than the theoretical

rate, and this fact may be expressed by the equation

M=CMt (1)

in which C is a correction factor or discharge coefficient by which the

computed theoretical rate must be multiplied to give the true rate M.

If the nozzle is to be used in this way as a flow meter, the value of G
must, of course, be known to the same percentage accuracy as is

required in M.
The obvious procedure for finding the value of C is to measure M

by some direct method which does not involve any assumptions

—

by means of a gas holder, for example—and compare the value

obtained for M with the value of M t computed from the observed

working conditions. If this has been done, the nozzle may be used as

a convenient secondary standard, the primary standard being the

method or instrument by which M was measured.

There is abundant experimental evidence to show that under ordi-

nary working conditions the values of C for well-made nozzles are

always within a few per cent of unity. But when an accuracy of

two or three parts per 1,000 is required we are left in the lurch, so far

as large nozzles are concerned, because no method of that accuracy

has been developed so as to be available for measuring large rates of

discharge directly, for the purpose of standardizing large nozzles. As
the matter now stands, if large rates of flow are to be measured with

an accuracy of 0.5 per cent or better, it is necessary to treat the noz-

zle as a primary standard, accepted on its own merits.

What is done is, in effect, to assume that the whole difference

between M and M t is due to the violation, in practice, of the condi-

tion that the speed of the jet shall be uniform right out to the wall of

the nozzle, the other ideal conditions of the theory being sensibly

realized. The effect of the falling off of speed near the wall of the

nozzle is then determined by exploration with a fine impact tube, and
a suitable correction applied to the computed theoretical rate of dis-

charge M
t . This amounts to determining C by a self-calibration of

the nozzle, without reference to any other standard.

To justify this procedure, we have to examine and criticize the

assumptions involved in it and satisfy ourselves that they are suffi-

ciently near the truth to make the values obtained for M accurate to

much better than "a few per cent." We shall attempt to do this.

The nozzles used in the present investigation were of the converg-

ing type, ending in cylindrical throats, and the speed of the jet was
always below the speed of sound in the jet. The discussion may
therefore be limited to these conditions, and it will not be necessary

to consider diverging nozzles or very high speeds. It will also be
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supposed that the approach pipe is straight, round, and coaxial

with the nozzle, as it was in our apparatus.

It is sometimes convenient to regard the stream of fluid through the

nozzle as composed of a bundle of small filaments, each bounded and

separated from the adjacent filaments by a tubular surface with its

axis everywhere along the direction of the average motion. If the

flow is perfectly steady and along fixed stream fines, this conception of

stream tubes is evidently legitimate ; but more often the flow is some-

what turbulent and the velocity at any fixed point is not quite steady

but subject to small, rapid, irregular, fluctuations in both direction

and magnitude.

In this general case the direction of the mean velocity at a point

may be defined as the direction of a straight line, such that the mass
flow through a small closed curve drawn about the point in any plane

containing the line, vanishes when integrated over any appreciable

interval of time. Since it is characteristic of turbulence that the

fluctuations are too rapid to be followed by our ordinary measuring

instruments, an "appreciable" interval of time is to be understood

as one during which a large number of fluctuations takes place.

With this definition, a system of curves may be drawn in the

stream so as to be, at each point, tangent to the direction of the mean
velocity at that point; and the stream may be divided into filaments

by tubular surfaces generated by the motion of such curves perpen-

dicularly to themselves. On the whole, no fluid enters or leaves such

a filament transversely; the mass flow is sensibly constant at any

section of the filament and the same for all sections; and the motion is

in some respects analogous to flow along a tubular channel wdth

rigid impervious walls.

The magnitude of the mean velocity at any point, or the mean speed

there, may be defined by saying that the constant mass flow along an

infinitesinial filament containing the point is equal to the product of

the mean speed, the density, and the cross sectional area of the fila-

ment at the point.

Having disposed of these preliminaries, we may state the assump-

tions on which the theoretical equations are based and outline the

deduction of the equations, after which we shall discuss the assump-

tions in some detail.

For the sake of brevity the normal section of the approach pipe

just ahead of the point where the stream begins to converge toward

the nozzle will be denoted by AG , and the normal section of the

emerging jet at the mouth of the nozzle will be denoted by A. The
assumed ideal conditions under which the theoretical equations

would be true and M exactly equal to Mt may now be described, as

follows

:

(a) The static pressure of the fluid is uniform and constant over A .
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(b) The static pressure in the jet is uniform over A and is equal

to the constant pressure of the atmosphere into which the jet is

escaping.

(c) The temperature of the fluid is uniform and constant over

A and A.

(d) The mean velocity is uniform over A and A and parallel to

the common axis of the pipe and the nozzle.

(e) There is no transmission of heat between the fluid and the

nozzle or between different portions of the fluid; that is, the flow

from A to A is adiabatic.

(/) There is no dissipative generation of heat either by the decay

of turbulence or by reason of transverse variations of speed, which

may occur in the converging stream even though the velocity is

uniform and axial at AQ and A.

ig) The fluid is an ideal gas.

The following notation will be employed:

D , D = the diameters of the sections A and A, respectively

;

/3 = D/DQ — the "diameter ratio" of the nozzle;

S , # = the speeds normal to A and A;

p , p = the static pressures in the gas at A and A

;

p , p = the densities of the gas at A and A

;

O ,
= its absolute thermodynamic temperatures at AG and A;

€ , e = the values, at A and A, of the internal energy of the

gas per unit mass;

To, T=the values, at A and A, of the kinetic energy of unit

mass of gas;

Cyj (7p = the specific heats of the gas at constant volume and

constant pressure, respectively;

7= CJCv = th.e specific heat ratio of the gas;

B = the "gas constant" for unit mass of gas;

.Mt =the "theoretical" mass flow or rate of discharge from

the nozzle;

M= the actual or true mass flow: M and M t would be identical

if the assumed ideal conditions were realized in practice.

As regards units, quantities of heat and internal energy are to be

measured in the same units as kinetic energy and work, and mechan-

ical quantities are to be measured in some set of normal units. For

example, if speed is in ft./sec, density in lb. /ft.
3

, and mass flow in

lb./sec, then diameters are to be in feet, pressures in poundals per

square foot and quantities of energy in foot poundals (1 ft./lb. = 32.2

feet poundals, and 1 lb./in.
2 = 32.2X 144 poundals per square foot.)
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Units of this sort are most convenient in the theoretical work, but
more familiar units will be introduced later when the equations are

to be used for numerical computation.

The first law of thermodynamics, as applied to the passage of unit

mass of gas through the nozzle from, A to A, may be expressed by
the equation

(T+e)-(TQ + e )=^-£+W+Q (2)
Po P

in which the first member represents the increase of the total energy

of the unit mass, kinetic plus internal, and the terms of the second

member have the following meanings

:

Po/po, or p X the specific volume at A , is the work done on the

unit mass, as it crosses A , by the gas following it;

p/p is the work done by the unit mass, in crossing A, on the gas

ahead

;

W is the work done by outside forces on the unit mass while it is

between A and A; and

Q is the heat received from outside sources by the unit mass while

it is between A and A.

In the case of a horizontal nozzle with fixed rigid walls, no work
is done by the walls or by gravity and TF=0. Furthermore, in the

ideal state of flow now under discussion, Q = by assumption (c), the

flow being adiabatic. Equation (2) may therefore be written in the

form

r- r-=(-+SM-?) •
«

In perfectly steady stream line motion with the speed uniform, as

required by assumption (d), the kinetic energy per unit mass is

simply S2
/2. But if turbulence is superimposed on the steady flow,

the kinetic energy of the turbulent motion increases the total kinetic

energy by an amount Ji equal to the quantity of heat that would be

generated if the turbulence were all instantaneously dissipated

without changing the speed S. We must therefore write, in general,

and

02 02

T =Y+7i ; T=~+h (4)

T-T =±(S2-S2 )-(h -li) (5)

in which the term (hQ — K) represents the amount by which the kinetic

energy of turbulence has decreased from A to A by dissipation into

heat.
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In the ideal case, assumption (J) requires that Qio — li) = 0, though

it is to be noted that Ji and % are not required to vanish separatery;

hence we have

T-T =\{S>-S\) (6)

or by (3)

>- s2°Kf° +£Ke+
p)

(7)

Since the rate of discharge is constant, the mass flow is the same

at A as at A and we have

lf t=|X> 2
oPoS =|D 2pS (8)

and after eliminating S from (7) and solving for S, we have

V

—

oJ \ pJ
(9)

which holds for the flow of any fluid, subject to conditions (a, ,/),

because *rp to this point no assumption has been made regarding the

nature or properties of the fluid.

Since skin friction necessarily retards the flow near the wall of the

nozzle, assumption (d), that the speed is uniform over A, implies

that there is no skin friction and that the flow is unresisted. By
assumptions (e, f) the flow is also adiabatic and free from any in-

ternal dissipation; hence the process of expansion and acceleration

from A to A is isentropic, and in order to go on from (9) we must

know how the density and internal energy of the fluid in question

vary with the pressure during isentropic changes of state.

These relations become very simple if it is stipulated that the

fluid shall be an ideal gas, in accordance with assumption (g). An
ideal gas is, by definition, one for which the equations

A
z=R = constant, and Cv = constant (10)

pv

are exactly satisfied. For such a gas it is readily shown, by ele-

mentary thermodynamics and with no further assumptions, that

7?

Cv= r and e= Cv9 + constant (11)7—

i

and that during isentropic changes of state between any two pres-

sures p and p , the density and temperature change in accordance

with the equations

P~o
~
\Po)

an
#0
"
VPo/
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From (10, 11, 12) we have

(* +$)-0+*)-c*+*.><^-AKM

and after substituting from (13) into (9) and eliminating — by
means of (12) we have p0

where

The mass flow may then be found from (8), one form of the result

being

Equations (14, 15, 16) may, of course, be obtained in various

alternative forms by utilizing (11, 12, 13) in different ways, but since

the subject is treated in most works on technical thermodynamics
the foregoing outline of the reasoning will be sufficient here, and
further algebraic details may be dispensed with.

The quantity B, denned by (15), is the "speed-of-approach factor"

necessitated by the fact that the gas crosses the section A at the

finite speed S , instead of starting from rest, as in the case of an

orifice in the wall of a large tank. If A is very large compared with

A, S2
is negligible in comparison with S2 and may be omitted from

(7). In other words, if /3 is very small, B is sensibly unity and may
be omitted from (14) and (16). The greatest value of (3 for any of

the nozzles used in this investigation was 5/36; and since p was
necessarily always less than p , the greatest possible value of B was
less than 1.00019. The correction for speed of approach was thus

entirely negligible, even in the worst case, and B could be omitted

from (14, 16).

The assumptions described above define the ideal conditions under

which the actual speed and rate of discharge would have precisely

the theoretical values given by (14, 16), but the same conditions

might have been defined by stating the assumptions somewhat
differently. For example, if the fluid were entirely nonconducting

and free from viscosity, conditions (e) and (J) would be satisfied

automatically, and these two assumptions might, therefore, be

replaced by the two other assumptions, that the fluid was noncon-
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ducting and nonviscous. The particular set of assumptions adopted

above was chosen, partly because it permits of going as far as equation

(9) without imposing any restrictions whatever on the nature of the

fluid and partly because it is easier with this choice than with some
others to form an estimate of the probable effect of the departures

from the ideal conditions which necessarily occur in practice. As
they now stand, assumptions (a _/), concerning the general nature

of the fluid motion, are more or less interdependent, but the final

assumption (g) is quite separate from the others, and it will be con-

venient to dispose of it first.

No real gas satisfies equations (10) exactly, for departures may
always be observed if the experiments cover a wide enough range;

but all that is really assumed is that the equations are satisfied over

the range of pressure from p to p and over the accompanying range

of temperature due to the cooling by rapid expansion from p to p;
and if R and Cv are sensibly constant over this range of conditions,

the use of equations (10, 11, 12) is justified.

In our work with flow nozzles the initial pressure in the pipe was
seldom more than 1 lb. /in.

2 above the outside barometric pressure,

but during the calibration of two of the smaller nozzles there were a

few cases in which the pressure drop was nearly 2.6 lbs. /in.
2
, so that

the pressure fell from 17.3 to 14.7 lbs. /in.
2

. The simultaneous fall of

temperature may be found approximately by means of (12), and for

initial temperatures in the vicinity of 70° or 80° F. the cooling must
have been about 25° F.

Over this range of conditions the variations of R from its mean
value are of the order of ± 1 in 25,000. The variations of Cy are

nearly ± 1 in 1,300 and those of 7 ± 1 in 4700. But a change of this

magnitude in 7 affects the value of S computed from (14) by only

about 1 in 200,000. In view of the foregoing, it seems quite safe to

ignore the variations of R and Cv and to accept assumption (g), or

equations (10, 11, 12), as sensibly exact under the given experimental

conditions.

We proceed to the consideration of assumptions (a) and (b). In a

steady stream of gas flowing straight along a uniform pipe the static

pressure must be uniform over any normal section, for any departure

from this condition would result in transverse currents and be incon-

sistent with flow parallel to the axis. If the flow is turbulent, it is

to be presumed that the static pressure at any point is subject to

rapid fluctuations; but if the stream has been freed from permanent
eddies, cross currents, or whirl, either by straightening devices or by
a sufficient preliminary length of straight pipe, the average static

pressure must be the same at all points of a cross section. Assump-
tion (a), therefore, corresponds closely to the actual experimental

conditions.
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The boundary of a jet of air from a now nozzle may be made visible

by suitable means, and for speeds below that of sound, observation

shows that while the boundary gradually loses its sharpness at increas-

ing distances from the end of the nozzle, it starts out as a cylinder and

shows no tendency to swell or shrink laterally, as it would necessarily

do if the air in the jet were at a different pressure from the surround-

ing atmosphere. From this it may be concluded that the static pres-

sure is sensibly uniform and equal to the atmospheric back pressure

at all points of the exit section A. This agrees with experimental

measurements of the static pressure at the center of the mouth of the

nozzle, where the pressure, if not uniform, might be expected to differ

most from the outside pressure.

It thus appears that assumptions (a) and (b) are, as nearly as we
can tell, satisfied in practice and that, in this regard, the ideal state of

affairs is a close approximation to reality, though it is impossible to

say just how close.

Turning to assumption (c), we find that the first part requires no
extended comments, for the temperature in the approach pipe is under

experimental control, if necessary, and may without difficulty be made
very uniform; but the remaining assumptions are not so readily

disposed of, for the assumed conditions are evidently violated in the

outer part of the stream close to the wall of the nozzle. Nevertheless,

equivalent assumptions sufficient for the validity of (14) may be very

nearly true for the central part of the stream at a distance from the wall,

and we may consider this possibility.

If the section of the jet at the mouth of the nozzle is explored with a

fine impact tube, there is no indication of any systematic variation of

the impact pressure with distance from the axis until the tube is moved
fairly close to the wall, when the impact pressure begins to fall off

rapidly. So far as impact pressure is concerned, and to the limit of

accuracy of the apparatus, the jet consists of a uniform core surrounded

by a thin nonuniform sheath.

Decreasing the speed of the jet thickens the sheath and diminishes

the diameter of the core, and the same effect is produced by increas-

ing the length of the cylindrical throat. Another pertinent fact is

that when a steady stream of fluid enters a long, straight pipe from

a large space in which the fluid is sensibly at rest the impact pressure

is found to be uniform over almost the whole of a cross section near

the entrance and does not settle down to its ultimate nonuniform

distribution for a long distance.

It takes time for a tangential drag or shearing stress to be prop-

agated from one point to another in a fluid, and the observations

cited above show that the uniformity of the core at the mouth of

the nozzle is due to the shortness of the time of transit of any given

particle of air through the nozzle. The retarding effect of a wall of
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given smoothness penetrates the stream only a certain distance

before becoming inappreciable, and beyond this distance—the

thickness of the sheath—no effect is produced unless the skin fric-

tion is increased by roughening the wall or unless, alternatively,

the time available is increased, either by slowing down the jet or

by lengthening the nozzle. Those filaments of the stream which

make up the uniform core observed at the exit section A are too far

from the wall to have been appreciably retarded by it, even at the

end of their course through the nozzle, and the flow along them goes

on in the same way as if there were no skin friction at all.

To this conclusion it might be objected that the impact pressure

of a stream depends on density as well as speed, and that constancy

of impact pressure does not prove that speed and density are

separately constant. Any change of speed due to the proximity of

the wall of the nozzle must necessarily be a decrease, but a simulta-

neous increase of density by the right amount would offset this and

keep the impact pressure constant, in spite of the falling off of

speed.

In reply, it may be remarked that if the static pressure is constant

all the way across the mouth of the nozzle, as it appears to be, an

increase of density near the wall would require that the temperature

there be lower than farther out in the stream. Now, the air is cooled

by its rapid expansion and, in any normal circumstances and in

the absence of artificial cooling of the nozzle, it tends to be colder

than the nozzle and to be heated by contact with it. Furthermore,

the surface layer is most heated by skin friction because it is most
rapidly sheared. For both these reasons the air immediately in

contact with the wall must be not colder but hotter than the air

farther out, and the transverse temperature gradient must be up-

ward toward the wall. Hence, there can be no such compensating

increase of density as was postulated above, and we are justified in

concluding that the speed at the exit section A is unretarded by
skin friction at least as far out from the axis as the impact pressure

remains constant.

The increase of temperature due to the flow of heat from the surface

layer toward the axis is also confined to the sheath and is impercep-

tible inside the core, for at constant static pressure an increase of

temperature at any point within the core would lower the density

and would have to be accompanied by a simultaneous increase of

speed in order to keep the impact pressure constant. The nearer the

point in question is to the source of heat at the wall the greater will

be the rise of temperature and the greater the increase of speed re-

quired to compensate it, whereas the speed can only decrease toward

the wall, if it changes at all. Hence, the heating must be negligible

inside the core where the impact pressure is constant.
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It may be noted here, as a side remark, that the propagation of a

retarding drag and of a rise in temperature into a stream of gas,

from a fixed boundary which is kept hotter than the gas, is the result

of a single mechanism, so that the two phenomena are not independent
but intimately connected. When two parallel streams of gas are

flowing past each other they tend to mix, and the mixing tends to

equalize both temperature and velocity. In pure stream line motion
the mixing is on a molecular scale by diffusion, which tends to equalize

not only the mean longitudinal components of the molecular ve-

locities, but also the mean molecular kinetic energies of translation

in all directions indiscriminately, to which the absolute temperatures

are proportional. If the motion is turbulent, the mixing occurs on a

molar instead of on a molecular scale; the colder but faster moving
layer is continually having some of its particles replaced by others

from the adjacent layer which are hotter but moving forward more
slowly. The substitution of turbulent convection for the slower

process of mixing by diffusion accelerates both phenomena, but the

parallelism of heating and retardation remains and both effects

necessarily increase or decrease together.

To return from this parenthesis, the general conclusion is that

the expansion and accelaration of the air that escapes from the

nozzle within the region of uniform impact pressure revealed by
exploration with the impact tube go on in sensibly the same manner
as if the wall of the nozzle were perfectly frictionless and noncon-

ducting. And if we now suppose this inner part or core of the

stream to be surrounded by a geometrical surface, reaching from

A to A and so constructed as to be everywhere tangent to the

direction of the mean velocity, the air of the core is discharged

through this imaginery nozzle in precisely the same way as if the

geometrical surface were a rigid, impervious, frictionless, noncon-

ducting, material nozzle, somewhat smaller in diameter than the

actual nozzle but of similar though less sharply curved profile. The
conditions which were originally assumed to prevail throughout the

stream but which are evidently violated near the wall of the nozzle

are much more approximately satisfied in this core from which the

nonuniform sheath has been excluded; but some further exami-

nation of the circumstances is required before it can be admitted that

all the conditions necessary to the validity of (14) are satisfied.

It will first be supposed that the diameter ratio /3 is so small that

$2 and, a fortiori, its transverse variations, may be neglected. As
already noted, this condition was satisfied by even the largest of the

nozzles employed in the present investigation.

The different filaments of the core now all start from A at the

same static pressure p and with the same (negligible) speed S
,

and they all reach A at the same static pressure p and with the same
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impact pressure. The question is : Can the flow along each filament

be regarded as unresisted, adiabatic, and free from internal dis-

sipation; that is, as isentropic? If so, the speed 8 attained at A
must be the same for all filaments and must have the value given

by (14).

The conditions of flow are not quite the same along all the fila-

ments, because the outer ones are longer and more curved than the

ones near the axis; and it can not be assumed that there are no
transverse gradients of speed and no shearing anywhere in the con-

verging stream, eVen though there is no skin friction to retard the

outer layer. Such shearing will be distributed symmetrically about

the axis of the nozzle, but it will be different at different distances

from the axis on account of the varying curvature of the filaments.

Let us consider the ring of filaments where this shearing is most
rapid, wherever that may be. The resistance to shearing dissipates

kinetic energy into heat, lowering the speed and raising the temper-

ature relatively to other filaments where the rate of shear is lower.

Hence, where those filaments which have suffered the greatest dissi-

pation arrive at A, over which the static pressure is constant, the

impact pressure will be less than it is elsewhere; but in practice no

such variation is observed, hence it is to be concluded that the effects

of this internal dissipation on the speed of flow are insignificant, and

that the speed at A is sensibly uniform throughout the core. More-

over, if this dissipative heating is insignificant, its effects in disturb-

ing the initial uniformity of temperature and causing a flow of heat

between adjacent filaments must also be negligible, and the flow

along each filament of the core may be regarded as adiabatic.

It remains only to consider the possible effects of the dissipative

decay, between A and A, of turbulence initially existing at AQ . It

is a matter of common observation that the natural turbulence of a

stream of water or air decreases with the speed of the stream and

may even become quite imperceptible while the general forward

speed is still considerable; and it is obvious that, in the absence of

artificial stirring or of devices introduced with the special purpose of

creating turbulence, the kinetic energy of turbulence in any oidinary

slow stream is, at all events, not.of a higher order of magnitude than

the kinetic energy of the general forward motion.

If the latter supplies only a negligible term to the equations for

the speed of the jet, as is now supposed and as was true in our experi-

ments, the term representing heat obtained from the dissipation of an

equal amount of kinetic energy of turbulence must also be negligible.

Moreover, turbulence does not vanish instantaneously but decays

slowly, and it seems probable that only a small fraction of the tur-

bulence existing at AG is dissipated during the extremely short time

of transit through the nozzle. It therefore seems perfectly safe to
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assume that under such conditions as existed in our experiments the

effects of the dissipation of initial turbulence were entirely negligible.

Accepting the foregoing reasoning as valid within the limitations

of accuracy of the experimental observations on which it depends,

we may now say that the flow along each filament of the core is

unresisted, adiabatic, free from dissipation, and therefore isentropic;

hence equation (14) is applicable to each filament separately. And
since the initial speed and density and the initial and final static

pressures are the same for all, the final speeds and temperatures are

also the same, and the final speed of the uniform core at the mouth
of the nozzle has the value

given by (14) when /3 is small enough that S2
is negligible.

The ideal conditions required for the validity of (17) thus appear

to be very nearly realized in the core of the jet, and under the cir-

cumstances of our experiments it seems probable that if the observa-

tions of pressure and temperature were exact, equation (17) would
give the true speed of the middle part of the jet within ± 1 in 1,000

or better. If the uniform core filled the whole section of the mouth
of the nozzle, the mass flow might then be found to the same accuracy

by (16); but since the nonuniform sheath is of finite thickness, a

correction factor must be introduced, and in default of a method for

the absolute measurement of mass flow this factor has to be deter-

mined by means of impact tube observations. Hitherto, it has been

sufficient to assume, as a familiar qualitative result of experiment,

that the impact pressure of a stream of fluid increases with both

speed and density, but it now becomes necessary to discuss the

quantitative interpretation of measurements of impact pressure.

Let the impact tube be placed, pointing directly upstream, in a

current of air of speed S, static pressure p, and density p; and let A
be the observed impact pressure, so that the absolute static pressure

of the air in the mouth of the tube is p + A = p . The values of p
and A are observed directly, while that of p has to be found from

an observation of the temperature, together with the value of p
and known constants for air. The problem is to find the unknown
value of S from the observations of pressure and temperature.

Air approaching from upstream is slowed down and brought

sensibly to rest at the mouth of the impact tube, and concurrently

with this decrease of kinetic energy the air is compressed and its

pressure rises from p to p + A. This air may be regarded as flowing

along a tubular filament which is initially of very small cross section

in the undisturbed stream but which expands laterally as the speed

of flow along it decreases, and finally merges into the nearly station-
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ary cap of air at the static pressure p + A, which covers the mouth of

the tube. The equivalent outflow needed to maintain a steady

pressure in the mouth of the tube is provided by a continual slow

spilling over the edge, this escaping air falling at once to the pres-

sure p and mixing with the general stream past the tube.

If it be assumed that the flow along this central filament is adi-

abatic, unresisted, and free from dissipation, the process of deceler-

ation and compression is isentropic and thermodynamically reversible

and is an exact reversal of adiabatic isentropic expansion from

p + A to p, accompanied by acceleration from a negligibly low speed

to the final speed S. Hence, on the permissible assumption that air

acts sensibly like an ideal gas, the air speed required to set up the

observed impact pressure will be given by the equation

W^rfLCrF-]
which is identical in form with (17) and deduced by the same theo-

retical reasoning.

Equation (18), or some more convenient mathematical equivalent,

is commonly used for finding the value of S; but since the equation

is deduced from assumptions which are evidently not exactly true,

this practice requires justification.

In discussing the discharge of air through a nozzle, reasons were

advanced for supposing that the conditions are so nearly uniform

across the core of the stream that the flow along any filament is sensi-

bly unaffected by interchange of heat or momentum with adjacent

filaments; but in the case now under consideration the conditions are

evidently different and are less simple. The central filament which

leads to the mouth of the impact tube is not surrounded by other fila-

ments which are just like it and so have no effect on it. On the con-

trary, the surrounding filaments are, on the whole, moving much
faster than the central one and must exert a forward drag on it,

something like a negative skin friction. Moreover, the air in the cen-

tral filament is heated by the rapid compression, and must lose heat

laterally. The reasons for regarding (17) as accurate for the case of

the jet are therefore not sufficient to make (18) appear reliable for

interpreting impact tube observations, and some additional evidence

is needed before (18) can be trusted.

The best sort of evidence would be furnished by experiments in

which the air speed 8 was measured by an independent absolute

method, but such measurements are difficult, and there is not much
evidence of this kind available, even for low speeds. Experiments at

the National Physical Laboratory 17 showed that up to air speeds of

» Bramwell, Relf, and Fage; Rep. Adv. Comm. Aeron., p. 35; 1912-13.
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50 ft.-sec. the measured and computed speeds did not differ by more
than 1 part in 1,000; and other observers, using various methods
for measuring the speed, have also failed to detect any disagreement

of measured and computed values greater than the errors ofexperiment.

For higher speeds there are no direct measurements to refer to but there

is, fortunately, an important piece of indirect evidence.

Let an impact tube be fixed on the axis of the jet from a flow noz-

zle a little outside the end of the nozzle, and let it be connected,

through a sensitive differential gauge, to a static side hole in the wall

of the approach pipe ahead of the nozzle, so that the gauge indicates

the excess of the total static pressure in the impact tube over the static

pressure of the approaching stream. If the speed of approach is so

low that the equivalent impact pressure is below the limit of accuracy

of the gauge, the gauge reads sensibly zero, otherwise the reading of

the gauge is equal to the impact pressure at the axis of the approach-

ing stream. In any event, the total pressure in the impact tip at

the mouth of the nozzle is equal to the total pressure in an impact

tip placed in the center of the approaching stream.

This convenient relation, which was pointed out and utilized

by Moss 18 in the paper already cited, appears to hold very accurately.

In addition to the experiments of Moss, experiments by the Bureau
of Standards with a 2-inch nozzle on the end of an 8-inch pipe have

shown that at air speeds slightly below the speed of sound the relation

was certainly accurate to within less than 0.001 of the pressure drop

through the nozzle, and there is every reason to suppose that it holds

more rather than less accurately at lower speeds. 19

The air in the central filament which strikes the mouth of the

impact tube starts from a low or negligible speed in the approach pipe,

expands to atmospheric pressure at the mouth of the nozzle, and is

accelerated to a high speed there. It is then decelerated and brought

to rest at the mouth of the impact tube, and its pressure rises from

atmospheric to the pressure in the tube. The relation described

above shows that the final pressure of the air when brought to rest is,

as nearly as we can tell, exactly equal to the initial static pressure

it would have had in the approach pipe if the pipe had been very large

and the speed of approach negligible; and that so far as speed and

static pressure are concerned the second half of the process is an exact

reversal of the first half.

It follows from this that if (17) does, in fact, give the speed of the

jet accurately, from observations of the initial and final static pressures

and the initial temperature (needed for computing p), (18) gives the

speed of a stream of air to the same degree of accuracy from obser-

18 Trans. Am. Soc. Mech. Eng., 38, p. 761; 1916. See also a recent paper presented at the annual meeting

of the society; December, 1927.

19 Under some very special conditions the relation might be expected to fail, but these conditions would

never occur in ordinary practice. See M. Barker; Proe. Roy. Soc, A-lOl, p. 435; Aug. 1, 1922.
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vations of the impact pressure A and of the static pressure and tem-

perature of the undisturbed stream. Hence, if we admit the force of

the reasons set forth above for regarding (17) as accurate for the core

of a jet, we must accept (18) as confirmed empirically, without any

further discussion of the physics of the impact tube.

There is, however, a quite different way of looking at the matter.

Let us ignore the arguments hitherto advanced in favor of the accuracy

of (17) and start afresh from the experimental fact that when an impact

tube is placed in the jet from the mouth of the nozzle the expansion and

acceleration through the nozzle are reversed by the compression

and deceleration in front of the impact tube.

This is, of course, just what would happen if the whole process of

expansion and recompression were completely reversible and isen-

tropic, for on this condition both (17) and (18) are exact, and the

experimental relation necessarily follows; but while this condition is

sufficient it is not strictly necessary, for it is conceivable that both

parts of the process might be irreversible, and yet the departures

from the ideal conditions might happen to offset each other in such

a way that both equations were always in error by the same amount
and the experimental relation still subsisted.

If the conditions of expansion along a core filament to the end of

the nozzle were at all like those of the recompression along the central

filament ahead of the impact tube, such a compensation of errors

might seem possible; but when we consider the dissimilarity of the

two processes it seems almost infinitely improbable that there should

be any compensation of this sort. There are obvious causes to pre-

vent either process from being exactly reversible and isentropic, but

these causes are so different, while their effects, if any, are the same,

that the only rational conclusion to be drawn is that the effects are

insignificant in both cases; and from this it follows that the ideal

conditions for the validity of (17) and (18) are so nearly realized in

practice that the departures from them may be ignored and the

equations regarded as sensibly exact.

This second method of justifying the use of the theoretical formulas

is much simpler than the former one, and it is based on a single well

established experimental fact, namely, the existence of the relation

pointed out by Moss, which is known to hold to an accuracy of 1

in 1,000 at worst. Most readers will probably find the argument

more satisfactory than the earlier one; but in any event it seems

safe to assume, in the absence of convincing experimental proof to

the contrary, that, so far as the equations themselves are concerned

and aside from errors in the measurements of pressure and tempera-

ture, the equations will give the true values of the speeds in question

to an accuracy of 1 part in 1 ,000 or better, and they will henceforth

be accepted without further discussion of their accuracy.
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The employment of the impact tube in calibrating a nozzle so as

to determine the value of its discharge coefficient (7= MJMt will be

considered in Appendix B. At present we have only to supplement

the theoretical discussion of the flow nozzle by showing how the

theoretical mass flow Mt may be computed in practice from the

observations of pressure, temperature, and humidity.

Direct substitution of S from (17) into (8) gives us

^-iW^'K^F- 1

]
(19)

and by (12) we have

*™>o • pT^°(J;F (20)

whence by (19)

which is the form into which (16) degenerates when /3 is small, as it

was in the present experiments.

For air in the vicinity of atmospheric pressure and temperature the

specific heat ratio is very nearly 7 = 1.40, so that (21) reduces to

^ 2-WHM"-(01 (22)

Hitherto, all equations have been given in terms of normal units,

so that in (22), if Mt is expressed in lb. /sec. and pQ in lb./ft.
3,D must

be measured in feet and p and p in poundals/ft. 2
. If we now express

D in inches and p and p in lb. /in.
2

, the numerical factor

V144X32.174 = 047268

must be introduced and (22) becomes, with these new units

M^0.98222D^PoPo[(£)
V

-(fJ] (23)

The diameter D is a known constant for each nozzle and pQ and p
are observed directly, but the value of pG has to be found from the

pressure, temperature, and humidity of the air in the approach pipe.

The method of computation and the necessary data on air have

already been described in Section XI of the body of the paper, and

the result is expressed there by equation (26). Since the range of

pressure at the nozzle is small, we may set T= 1 and we then have,

for our present purpose,

^ = 2.6914^^1-0.38^-) (24)

14830°—29 6
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in which t°¥. is the temperature of the approaching air, and w lb. /in.
2

is the partial pressure of the water vapor in it. Upon substituting

this value of p in (23) we get as the final equation for computing

Mt

ift -1.6114Z)^ol /
1 ~ -38^ rfp_Y_fp_Yl (25)

V 458 + * [_W W J
in which:

Jft [lb./sec.] = the theoretical rate of discharge;

.D [ins.] = the throat diameter of the nozzle;

2> [lb./in.
2
]
= the static pressure in the discharge trunk;

2>[lb./in.
2
]
= the pressure of the outside atmosphere;

7r[lb./in.
2
]
= the partial pressure of the water vapor in the

air in the trunk; and

/ [°F.] = the temperature of the air in the trunk.

Appendix B. DISCHARGE COEFFICIENTS OF THE NOZZLES

It has been shown in Appendix A that the theoretical equations

(12, 17) may be regarded as giving the actual values of the density

and speed, without appreciable error, for all points of the section A
within the uniform core of the jet, and these equations lead to the

expressions (19, 21, 22, 23, 25) for the " theoretical" rate of discharge

which would occur if the core filled the whole throat of the nozzle.

But since, in reality, the speed is lower in the immediate vicinity

of the wall than farther away, the actual rate of discharge is less

than the theoretical rate, and the next problem is to find how the

theoretical rate must be corrected to allow for the actual departure

from uniformity of conditions near the boundary of the jet.

The only experimental method available for investigating the

state of affairs in the variable region consists in observing the impact

pressure in a fine impact tube set at various distances from the axis

of the jet, and we have now to consider how the results of such

observations may be interpreted and utilized.

The walls of the pipe and nozzle formed a surface of revolution,

and after the approaching stream had been straightened by passing

through the honeycombs, conditions in the jet appeared to be nearly

symmetrical about the axis of the nozzle. The arithmetical mean
of readings of the impact pressure at a given radius but in several

uniformly spaced azimuths was therefore taken to represent the

reading that would have been obtained everywhere at that radius*

if the flow had been completely symmetrical, and we proceed to

consider the properties of a symmetrical jet.

In accordance with the notation employed in Appendix A, let

pr , ST , etc., denote the density, speed, etc., in the exit section A at

the radius r, and let a be the radius of this section.
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The mass flow through a ring shaped element of A, of radius r

and width dr, is

dM=2vrdrPt8t (26)

whereas if the density and speed at this radius had the theoretical

values given by (12, 17) the mass flow would be

dMt= 2irrdrPS (27)

For this element of the area, the ratio of actual to theoretical flow is

prS T/pS, and the discharge coefficient of the nozzle is the average

value of this ratio for the whole area of the section. We therefore

have the equation

or if we abbreviate by setting

©- x and ^0^=2/

we have

c=j
o
W

(29)

(30)

If the values of y can be determined and the curve

y=J(x) (31)

drawn, the value of C may then be found graphically by measuring

the area inclosed by the curve, the axes, and the ordinate at x — 1.

If ABC in Figure 10 represents the curve, the value of the discharge

coefficient is given by
C= area OABCDO = 1 - area BECB (32)

This procedure can

not be followed
strictly, because there a

is no practicable way
of determining the re-

quired values of y ac-

cording to the defini-

tion in (29). But ap-

proximate values may
be obtained from
measurements of im-

pact pressure, and

under the conditions

prevailing in our ex- Q
periments the approx-

imation is close
enough that the foregoing graphical method may be followed

without serious error.

Fig. 10
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It was shown in Appendix A that, for an impact tube in a uniform

stream of air, equation (18) may be relied on as a sensibly accurate

relation connecting the observed impact pressure with the speed,

density, and static pressure of the undisturbed stream. With 7 = 1.40,

as for air, the equation is

S-M(^M
and after developing (1 + A/p)* by the binomial theorem, this may
be reduced to

S =Q^ (34)

in which

n r\ 5 A 10/AV 95 /AV, 247 /A

V

. li /o^^hli^Sy "686V?;
+240lW

-*- etc
J

(35)

Equations (34, 35) are usually more convenient than (33) for numer-

ical computation, and they are more suitable to our present purpose.

If the speed of the stream in which the impact tube is placed

varies transversely, as it does near the boundary of the jet from a

nozzle, and if the observed value of A is substituted in (34, 35), the

resulting value of 8 is the speed of a uniform stream, of the given

density and static pressure, which would set up the pressure actually

observed in the impact tube. This fictitious uniform speed is some
sort of average of the speeds upstream from the mouth of the tube

and is between the highest and lowest of them; but it is not neces-

sarily equal to the speed that would exist at the present position of

the geometrical center of the mouth if the impact tube were removed.

And when the impact pressure has been measured with the geomet-

rical center of the tip at a known distance from the axis of the nozzle,

and the corresponding uniform speed has been computed from

(34, 35), some uncertainty remains as to the radius at which the

speed of the jet really has this value.

The uncertainty diminishes with the diameter of the impact tip,

and the obvious remedy for it is to make the tip very fine; but the

possibilities in this direction are limited, both by mechanical diffi-

culties and by the fact that (33) ultimately ceases to hold, even for a

uniform stream.20 The tip used in all our final calibrations had a

diameter of about 0.02 inch, and this, though small, was not entirely

negligible, as will be noted later.

The task of interpreting the results of an impact tube calibration

is further complicated by the necessity of traversing the tip in a

plane that clears the end of the nozzle instead of exactly in the

plane A where the cylindrical throat of the nozzle terminates. It

20 See M. Barker, Proc. Roy. Soc, A 101, p. 435, Aug. 1, 1922.
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did not appear that there was any appreciable spreading of the

free jet in the short distance between these planes; but when the

impact tube was moved entirely outside the jet, so that its tip faced

the flat end of the nozzle, with a' clearance of a few thousandths of

an inch, there was still a considerable excess pressure in the tube.

This can not have been due to direct impact of the jet, and whatever

its cause it was spurious as an indication of impact pressure.

We shall start, however, by ignoring the difficulties just mentioned

and shall assume that values of A r have been obtained with a tip of

negligible diameter in the plane A. The effects of the actual de-

partures from these ideal experimental conditions will be considered

subsequently.

For a point at the radius r (34) takes the particular form

-^-tSi ^ Qt^77 (36)

in which Q T is denned by (35) with A T/p T in place of A/p; and from

(34, 36) we have, as a new expression for y,

Moreover, it may be shown that under the conditions of our experi-

ments both Q T/Q and p T/p were so nearly unity that the simpler

equation

was an adequate substitute for (37).

Before proceeding to justify this simplification it will be convenient

to put equation (30) into a slightly different form. Let rc denote the

radius of the uniform core; let

©'-w (39)

and let (30) be written in the form

C= ydx+ ydx (40)
JO Jw

Within the core A r = A and p TS t = pS. Hence, for x<w, y=l,
whether defined by the exact equation (37) or by the approximate

equation (38). Equation (40) may now be put into the form

0=w+(l-w)y (41)

in which (1 — w)y represents the area BCDFB of Figure 10 and y is

the mean ordinate of the part of the curve between B and C, which

refers to the variable region near the boundary. Any error in the
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location of the curve y=f(x) due to using (38) instead of (37) can

affect only this outer part of the curve.

We return to the consideration of p T/p. In normal operation the

mouth of the nozzle is kept somewhat warmer than the cold core of

the expanded jet by the flow of heat through the metal from the

entrance end which is in contact with the warmer air entering it;

and since the temperature of the surface film of air is largely, if not

completely, controlled by that of the metal in contact with it, the

temperature of the air at the boundary of the jet as it leaves the

throat will be somewhere between the initial temperature o and the

temperature 6 reached by isentropic expansion in the core.

The greatest conceivable effect of this sort would be to prevent

the surface film from cooling at all and make the expansion along the

wall isothermal; and since the static pressure is sensibly uniform all

over A, the final density at the boundary would then be

Pa = Pof- (42)

The final density in the core, as given by (12) with 7 = 1.40, is

'-*©* (43)

so that in the ideal extreme case we have

V?=®' <1 (44)

At any intermediate radius between r = rc and r= a the value of

Vpf/p will always be betv/een unity and the extreme lowest value

given by (44); and if dy denotes the amount by which the mean
ordinate y is overestimated when the variation of density is ignored,

an outside limit for this error is given by

dg

y

The resulting positive error in C is then, by (41, 45)

dO=(l-w)dy<(l-w)^l-(0
r

jy (46)

and since y is always less than unity, an outside value for the error

in C is given by

dC<(l-w)b-m (47)
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The effect of setting Q r
= Q may be treated in a somewhat similar

manner. Equation (35) shows that $<1, and that as Ar decreases

toward the boundary of the jet Q r increases, its limiting value being

Qa
= l, if Aa = 0. Ignoring this variation and setting Q T = Q for all

values of r results in an underestimate of y and of C, and [outside

limits for these negative errors are given by

-$3<l-Q (48)

and

-a'C<{l-w) (l-Q) (49)

For numerical values we turn to the experimental data. The
greatest pressure drop at which any of the nozzles was calibrated

was A = 2.6 lb. /in.
2

, and at this rate of flow the observed radius of

the uniform core gave w = Q.95 for the smallest nozzle. With these

values, we find from (47) and from (35, 49)

dC<0.0012; -d'C<0.0015

This same nozzle running at A = 0.6 lb. /in.
2 gave w = 0.93, whence

dC<0.0006; -d'C<0M05

At any given pressure drop the larger nozzles gave higher values of

w and therefore lower values of dC and —d'C.

It thus appears that the greatest conceivable errors in C which

could be caused by setting Q T
= Q hi (37) are of the same order of

magnitude as those caused by setting p r
= p, but of opposite sign, and

that both kinds of error are separately very small. The approxima-

tion involved in passing from (37) to (38) is. therefore amply close

and (38) may be used without further scruple.

This point having been established, the first step in finding the

discharge coefficient of a nozzle when running at a constant pressure

drop A, from the values of A r observed during the calibration, was

to plot the values of V^r/A against those of (r/a)
2 and to draw, as

nearly as possible through the resulting points, a smooth curve

$-$) (50)

such as is represented qualitatively by ABC in Figure 10. This was

an approximation to the curve that would have been obtained from

perfectly accurate observations, made in the ideal manner with an

impact tip of negligible diameter, traversed exactly in the plane of

the section A. The area BECB was therefore measured, and a
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provisional approximate value of the discharge coefficient of the

nozzle was found from the relation

(7=1- area BECB (51)

Figure 11 shows three sample curves drawn from observations on
a nozzle of 3.262 inches diameter with the impact tip of 0.02-inch

diameter. The positions of the plotted points are subject to the

errors of measuring the impact pressure and of setting the tip at the
intended radius, the former being halved and the latter doubled.

The uncertainty of setting was estimated to be about ± 0.003 inch,

and this corresponds in Figure 11 to a horizontal displacement of

nearly four of the smallest scale divisions, so that the abscissa of a
point representing a single observation might be in error by this

amount. Accidental errors were, however, partly ehminated in

Fig. 11

averaging a number of observations taken in different azimuths at

the same nominal radius, and the smoothness of the curves indicates

that the remaining accidental errors were small.

But assuming that these errors are very small and that the curves

are a sensibly accurate representation of the facts, it is evident that

they differ systematically from what might be expected of an ideal

calibration; for there can be no doubt that the air adheres to the

nozzle, or that the speed of the stream, so long as it is still inside the

nozzle, is entirely inappreciable at the wall

;

21 and curves obtained

from accurate observations made in the ideal manner would all

meet at the point (x=l,y = 0) represented by D in Figures 10 and 11.

It is the ideal curves that are needed in order that the graphical

method described above may give accurate values of (7, so we must
attempt to interpret the departures of the observed from the ideal

curves and apply corrections for them.

2i In this connection see Stanton, Marshall, and Bryant, Report Adv. Coram. Aeron. (Great Britian),

1919-20, 1, p. 51.
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In a perfect nozzle the plane end would meet the cjdindrical

throat at a right angle and the section A would be in the plane of

the end face instead of a little inside, as it is in any real nozzle because

the corner can not be made perfect, even if it is not intentionally

rounded off or chamfered to prevent damage in handling.

If the end of the impact tip were ground perfectly flat and set so

as, when moved out radially, to slide over the end of the nozzle,

making perfect contact, with no clearance, the observations of

impact pressure would be made in the plane of A, and the excess

pressure in the impact tube would vanish as soon as the tip had been

moved entirely outside the jet.

If b denotes the radius of the tip, let

a — b

. , /a + b\
a + b = r I1 ; I

—
-J=£n

(52)

As long as x<x I} the whole mouth of the tip is exposed to the

impact of the jet; when x^x^Xh, the mouth is only partly exposed,

the outer part being covered; and when x^x IT the mouth is com-

pletely closed. As the tip is moved out through the boundary of

the jet, the excess pressure in it must vanish when r = r 11} and curves

obtained in the way described would all meet at the point {x=x llf

i/=o).

In the case of Figure 11, a =1.631 inches and & = 0.01 inch, so that

a?i^=0.988 and x IT = 1.012. The lines marked / and II are drawn -at

these abscissas. Points on or to the left of / represent observations

with the tip entirely inside the jet; points between I and II represent

observations with the tip partly outside the geometrical prolongation

of the throat of the nozzle; and for points to the right of II—for

example, points on line III—the tip was entirely outside this pro-

longation.

The condition that the tip should make a perfect fit with the end

face of the nozzle was, of course, not satisfied, and the effect of the

clearance is very evident from the form of the outer part of the curves.

A free jet from a nozzle always entrains the outside air and sets up
a circulation in the vicinity. In some way which can not be specified

this circulation caused an excess pressure in the slit between the edge

of the tip and the end of the nozzle and gave a spurious reading

which was not due to the impact of the jet.

This induced circulation is maintained by viscosity, and the effects

of viscosity are proportional to the first power of the speed, whereas

true impact pressure is proportional to the second power. It is

therefore to be expected that the pressure due to the circulation will

increase less rapidly with the speed of the jet than does the impact
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pressure and will be relatively less pronounced at high than at low

speeds. This means that in Figure 11 the observed points on line

III should be lower as the value of A is higher, as they are, in fact.

On the other hand, the absolute values of A r for these points should

increase with A, and this expectation is also confirmed, though it is

not at once evident from the figure.

For very low jet speeds it is conceivable that the effects of the

induced circulation might even extend inside the prolongation of

the throat of the nozzle; but, in general, it is to be expected that

when the tip is entirely within this prolongation it will be free from

such effects. Accordingly, we find that the observed points to the

left of line / lie on curves which might, without violence, be made to

pass through the point D' ; and except for the lowest speed this is

true also of the points at x = 0.999, where the tip was nearly half

outside the prolongation of the throat.

The question now is, how ought the observed curves to be cor-

rected so as to give values of C which are unaffected by the induced

circulation and by the size of the tip? A precise answer is impossible,

but our actual procedure was as follows:

It was first assumed that if the clearance had been reduced to

zero the curves would all have met at the point D' . The distance

of J)' from D is

-4*©
1

DD' = 2~

and if h/a were negligible, the two points would be sensibly coin-

cident. The foregoing assumption means, therefore, that if the

effects of induced circulation were eliminated and the diameter of

the tip were negligible the curves would meet at D. This was accord-

ingly taken to be one point on each corrected curve.

It was then further assumed that as long as the tip was entirely

within the prolongation of the throat of the nozzle the effective

center of the tip was at its geometrical center. In other words, it

was assumed that so long as r<a— h the speed computed from the

observed A r by (34, 35) was the true speed at the radius r. This

means that in Figure 11 the curves were taken to be correct, out as

far as the line /.

Each curve was then corrected by drawing a straight line from the

point where it cut the line / to the point D. The area between this

line and the curve as first drawn was measured, and its value was

subtracted from the earlier, approximate value of C to give a final

corrected value.

With respect to the second of the two assumptions, it may be

remarked that when the tip was barely inside the jet, with its geomet-

rical center at r = a— b, it was in a region of rapidly varying speed,
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and that it is probable that its effective center was slightly displaced

toward the axis of the nozzle. If so, the point where the curve cuts

line / is too high and failure to allow for this makes the correction

too small. On the other hand, the curve is doubtless convex through-

out, and treating the last part as a straight line makes the correction

to G too large. The compromise adopted, for want of anything

better, gives only a rough estimate of the correction, but the whole

value was insignificant in most cases.

The curves given in Figure 11, which have been used for illustra-

tion, are fairly typical of the numerous others, though the turnup at

the end was often less pronounced and the curves sometimes came
closer to the point corresponding to D. Consistency in this regard

was not to be expected, because the clearance was not always the

same, even for the same nozzle, but varied irregularly with the azimuth

in which the slide carrying the impact tube was set.

The corrections to C obtained from the curves for any one nozzle

running at various rates did not differ greatly and an average value

was used for each nozzle at all values of A. These average values were

as given in Table 24.

Table 24

Nozzle

Correc-
tion (to

be sub-
tracted)

Nozzle

Correc-
tion (to

be sub-
tracted)

D-1
A-1
A-2
A-3

0. 0032
.0018
.0016
.0019

A-4
B-2
C-l
C-2

0.0013
.0013
.0011
.0011

In view of the smallness of these corrections, it seems very unlikely

that errors in the method of estimating them, described above, can

in any case have affected the final value of C by as much as ±0.001.

Figure 12 shows the calibration curves giving the values of the

discharge coefficient C in terms of the pressure drop through the

nozzle in inches of water. The separate points representing the

different calibration runs are put in so that the reader may form his

own opinion of the consistency of the observations on each nozzle.

No curve is given for nozzle B-l, which was used in only one of the

orifice tests recorded in this paper.

Nozzles D-1 and A-2 were calibrated at higher differentials, and

in each case three more points were obtained, which would be far

off the sheet to the right but are entirely consistent with the curves

as shown. The highest nozzle differential in any of the orifice tests

was about 27 inches of water, so that Figure 12 gives the parts of the

curves actually needed in reducing the observations on the orifices.



652 Bureau of Standards Journal of Research [Vol. 8

With the exception of the six points for D-l and A-2, mentioned

above, the points given represent all the calibrations that were made
with the exploring tip of 0.02 inch diameter. In the earlier stages of

the work a number of calibrations with several exploring tips of larger

diameter were carried out and gave points which were considerably

more scattered than those shown in the figure, probably because of

Fig. 12.

—

Discharge coefficients of flow nozzles

lack of experience in the manipulations. All these earlier observations

were discarded.

Table 25

Diameter
D

inches

Times
used

Differential at
nozzle

Nozzle
Greatest
h (max.)
inches
water

Least
ft (min.)
inches
water

1 2 3 4 5

D-l 1.764
3.255
3.262
3.272

3.258
4.521
5.006
5.003

57
5

154

7

1

62
16
63

27
13

18

26

17

17

12
12

0.25
1 12A-l

A-2 16
A-3 26

A-4 17
B-2..__ 21
C-l 4.1

2.7C-2
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The nozzles were not all employed to the same extent nor over the

same range of differentials. In Table 25 column 3 gives the number of

orifice tests in which each nozzle was used, each such test including

observations on three orifices in series. Columns 4 and 5 give approxi-

mate values of the greatest and least differentials at the nozzles in

the orifice tests. The lowest differentials were measured on an inclined

water manometer.

Upon examination of Figure 12 it appears that (a) so far as can be

judged, the points which determine each curve are consistent among
themselves within about ±0.001 in the values of 0; and (b) the best

determined curves are those for the four nozzles (D-l, A-2, B-2,

C-2) which were employed in most of the orifice experiments (336

out of 363).

Whether the different curves are consistent with one another is

a question which could not be answered with certainty except by
running two or more nozzles in series. We had no facilities for this,

but in a great many cases two or more nozzles were used in testing

a given orifice. If the discharge coefficients of the nozzles had not been

consistent among themselves, the discharge coefficients of the orifice

would have shown systematic variations, according to the flow

nozzle used; but no such systematic variations were found.

It seems to us probable that the absolute accuracy of the nozzle

coefficients read from the curves which are represented on a small

scale in Figure 12 was considerably better than ±0.3 per cent;

and we think that under favorable conditions of steadiness in the

supply of air or gas, and with sufficient care in calibration by means
of a fine impact tube nozzles of this character and of these sizes or

larger may be made reliable as primary standard flow meters to

within ±0.1 per cent.

Appendix C. SIMILAR ORIFICES

If a stream of fluid is forced along a pipe fine at a fixed rate of

discharge, any alteration of the line, such as the introduction of a

valve or an elbow into what was previously a straight run of uniform

pipe, modifies the motion for an appreciable distance ahead of the

place where the change is made, and on the downstream side, eddies

or whirls which may be set up are carried along for a considerable

distance before dying out. Thus, the distribution of velocity and
pressure at any fixed cross section depends on the nature of the line

for some distance in both directions, and the discharge coefficient

of an orifice installed in the line is influenced by the shape of the

nearer parts of the piping, although changes of shape or disturbances

set up at sufficiently distant points have no appreciable effect at

the orifice.
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In treating the discharge coefficient of an orifice as a definite quan-

tity it is therefore implied, and is always to be understood, that the

nature of the fine in which the orifice is installed is specified out to a

sufficient distance in both directions that changes at still greater dis-

tances have no further appreciable effect on the discharge coefficient.

It is not necessary that the pipe be either straight or uniform,

although that is the simplest shape to describe. What is required is

merely that all peculiarities of shape be specified in sufficient detail

that, aside from possible mechanical difficulties of construction, they

could be reproduced, either on the same scale or on a different one,

within such tolerances that the variations still permitted would not

change the discharge coefficient by more than the accidental error

of an experimental determination of its value.

It is also to be noted that the part of the fine that requires specifi-

cation may be limited to a comparatively short section by installing

honeycombs or cellular grids a few pipe diameters before the upstream

and after the downstream pressure tap. Such devices tend to protect

the intervening region from disturbances which may originate farther

away from the orifice, so that the nature of the rest of the fine is no

longer of any importance. If this plan is adopted, the design and
location of the grids must evidently be included in the specification.

To avoid circumlocution, the term "orifice" may be used to con-

note all these important features of the piping as well as the orifice

plate itself, and on this understanding any two " orifices of the same
shape" are geometrically similar in all essential respects. If they are

also of the same size, they are mere duplicates, and under any given

working conditions their discharge coefficients are equal. If they

differ in size, their discharge coefficients will be equal under similar

working conditions, if the term " similar" is suitably defined, and we
have next to consider what meaning is to be assigned to " similar"

in this connection.

For any given fluid the working conditions may be defined by the

initial pressure and temperature and the rate of discharge; but since

an orifice may be tested with various fluids, a general definition

of the " working conditions" must include some reference to the

properties of the fluid.

To simplify matters, it will first be supposed that the fluid is a

liquid, so that its properties are sensibly independent of pressure, and

compressibility does not come into the problem.

The discharge coefficient of a particular orifice for a given liquid at

a given temperature may vary with the rate of discharge—that is,

with the linear speed through the orifice—and if the properties of the

liquid are varied, either by altering the temperature or by substituting

a different liquid, it may again be found that the discharge coefficient

has changed. For present purposes the most obviously important
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properties of the liquid are its density and viscosity. Sufficiently

precise experiments would doubtless reveal the effects of altering

other properties, but under ordinary circumstances these effects are

inappreciable and, in practice, the values of density and viscosity

I

may be regarded as constituting a complete characterization of the

|

liquid with respect to flow along pipes or through orifices.

It follows from the foregoing that there is some relation connecting

i the discharge coefficient C with the speed of flow S, the density of

|

the liquid p, and its viscosity p.. In other words, there is some
equation

C=f(S, P,p) (54)

I

which holds for this orifice and shows how its discharge coefficient

\

depends on the working conditions specified by the values of S, p,

and p.

The mathematical form of the functional symbol or operator /
remains entirely unknown until determined by experiment; but it is

certain that some such equation exists, because changes of S, p, and

li p do sometimes affect the value of C, and the fist of variables is

complete because, so long as the orifice remains unchanged there is

nothing else of importance that can be varied independently.

For an orifice of another shape or size the operator / may be of

somewhat different form, and an equation which should hold generally

for all orifices would evidently have to contain a sufficient number of

geometrical quantities to account for all possible variations of shape

and size; but if the problem is limited to orifices of any one shape,

the only additional independent variable needed is a single linear

dimension such as the orifice diameter d, and there is some equation

C=F(S,P,p,d) (55)

which holds generally for all orifices of the given shape.

The form of F depends on the shape and can be determined only by
i
experiment, but it is subject to an important restriction which sim-

plifies the experimental problem very much. This is the familiar

condition that all the terms of the equation must be of the same
dimensions. Now, the discharge coefficient C is dimensionless, or of

zero dimensions, for it is a pure ratio, and its value is independent of

the unit by which the actual and theoretical rates of discharge are

measured. Hence, all the terms in the second member of (55) must
I also be of zero dimensions, and in order that this may certainly be

j

true, regardless of the still unknown form of the operator F, it is

necessary and sufficient that all the operands or quantities operated on

should be of zero dimensions.
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The quantities S, p, p, d do not satisfy this condition, and they can,

therefore, not appear separately but only in combinations, each of

which, taken as a whole, is of zero dimensions. The expression

^ =B (56)
P

satisfies this requirement, as is evident upon substitution from the

dimensional equations [d] = [l], [5
,

]
= [lt

_1

], [p] = [ml"3
], and [p] = [ml'H-1

],

and there is no other such combination. Hence, equation (55) is

restricted to the more specific form

C=«(~f)=<r(R) (57)

The form of ip still remains to be found from experiment, but there

is now only one independent variable R, instead of the four in (55);

and when the experiments have been made, the results can be repre-

sented within the experimental errors by a plane curve.

The statement made above, that R is the only dimensionless com-

bination of S, p, p, d, is, of course, to be understood as meaning that

there is no other combination which is independent of R. Such

expressions as R3 or log R are also of zero dimensions, but their

values are fixed by that of R and can not be varied independently

of it. So long as the form of <p remains indeterminate, equation (57)

is merely a statement that the value of C is fixed by that of R ; and

the introduction into the second member of any number of additional

quantities, each one of which was itself completely determined by R,

would not change the meaning of the equation in any way.

On the other hand, it is entirely permissible to replace R by any

other quantity which is determined by R. In other words, in repre-

senting the results of experiment by a plane curve with C as ordinate,

we may use any convenient function of R as the abscissa in place of

R itself.

For example, the mass flow M is connected with the density, the

diameter of the orifice, and the mean linear speed through it, by the

equation

(58)

so that

Hence, the quantity

M=%?PS

M
dfi

irdSp
~ 4M

M_
dfx

BVfjB

(59)

(60)

may serve in place of B, and equation (57) is equivalent to an equation

C=lK5') (61)
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Since the diameter ratio /5 is one element of "the given shape,"

the pipe diameter D is fixed by d and the quantity

£=R"=^R (62)

is another possible substitute for R. Or if S denotes the mean linear

speed along the pipe, the quantity

I)^=R fff = ^B (63)

may also serve as an independent variable; that is, as an abscissa

against which observed values of C may be plotted as ordinates.

In discussions of the loss of head in pipes the quantity TV" denned

by (63) is commonly called "the Reynolds number," though other

expressions derived from it might equally well receive that name,

and the same term is often used of the analogous quantities which

occur in the investigation of other problems in fluid motion, such

as the forces on airplanes. In the case of an orifice it may be applied

to any one of the quantities defined by (56), (60), (62), and (63) or

to any other quantity which is fixed by them.

In any event, the conclusion reached by the argument from di-

mensions may be expressed by the statement that, for orifices of

any one shape, the discharge coefficient for liquids is a function of

the Reynolds number only. The values of C for all orifices of the

specified shape, whatever the absolute size of the orifice or the nature

of the liquid or the rate of discharge, may be represented by a single

curve which pertains to and is fixed by the particular shape in

question; and when the curve has been determined by experiment

the value of C under any future conditions may be found by com-
puting the value of the Reynolds number for these conditions and
reading the value of G from the curve.

If the Reynolds number has the same value in two different ex-

periments on orifices of the given shape, the discharge coefficients

will be equal, and the phrase "similar working conditions," which

was used earlier, is to be interpreted as meaning "conditions under

which the Reynolds number has the same value." This state of

affairs—geometrically similar orifices operating under similar work-

ing conditions or at the same Reynolds number—is often described

by saying that the phenomena are "dynamically similar," and the

equality of the discharge coefficients of geometrically similar orifices

at equal values of the Reynolds number is a particular result of what
is commonly known as the "principle of dynamical similarity."

The foregoing discussion has referred only to liquids, and in order

to extend it to gases the additional property of compressibility must

be taken into account. This presents no great difficulty, but without

any further development of the dimensional reasoning it is sufficiently

14830°—29 7
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obvious that if the fall of pressure at the orifice is only a small frac-

tion of the absolute static pressure the change of density can have

only an insignificant effect, and the gas will behave sensibly like a

liquid. If the curve 0= <p (R) has been determined for orifices of a

particular shape by experimenting on liquids, the same curve is

therefore applicable to gases, provided that the percentage differential

is very small. Hodgson's experimental results are in entire agree-

ment with this statement.

Since the purpose here has been merely to present the idea of

the Reynolds number and to emphasize its importance for the benefit

of readers who are not already familiar with the subject,22
it is unnec-

essary to enter upon a detailed discussion of the experimental data

which have been published or of the forms of the curves for orifices

of different diameter ratios. The data have been examined, and the

conclusion drawn from them regarding the effects of viscosity in

commercial orifice meter practice has been stated in section 24 of

the body of the paper.

Washington, August 22, 1928.

22 For further discussion of the dimensional method see E. Buckingham, Model experiments and the

forms of empirical equations, Trans. Am. Soc. Mech. Eng., 37, p. 262; 1915.


